
March 2011 Doc ID 13465 Rev 10 1/81

UM0424
User manual

STM32
USB-FS-Device development kit

Introduction
The STM32 USB-FS-Device development kit is a complete firmware and software package
including examples and demos for all USB transfer types (control, interrupt, bulk and
isochronous). It supports all STM32 microcontroller families.

The aim of the STM32 USB-FS-Device development kit is to use the STM32 USB-FS-
Device library with at least one firmware demo per USB transfer type.

This document presents a description of all the components of the STM32 USB-FS-Device
development kit, including:

■ STM32 USB-FS-Device library: All processes related to default endpoint and standard
requests

■ Device firmware upgrade (DFU) demo: Control transfer

■ Joystick mouse demo: Interrupt transfer

■ Custom HID demo: Interrupt transfer

■ Mass storage demo: Bulk transfer

■ Virtual COM port: Interrupt and bulk transfer

■ USB voice speaker demo (USB speaker): Isochronous transfer

■ USB audio streaming demo: Isochronous transfer

In this document, STM32 refers to the following devices:

■ Low-density devices: STM32F101xx, STM32F102xx and STM32F103xx microcontrollers
where the Flash memory density ranges between 16 and 32 Kbytes.

■ Medium-density devices: STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

■ High-density devices: STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

■ XL-density devices: STM32F101xx and STM32F103xx microcontrollers where the Flash
memory density ranges between 512 and 1024 Kbytes.

■ Connectivity line devices: STM32F105xx and STM32F107xx microcontrollers.

■ Medium-density Low-Power devices: STM32L15xx microcontrollers where the Flash
memory density ranges between 64 and 128 Kbytes.

www.st.com

http://www.st.com

Contents UM0424

2/81 Doc ID 13465 Rev 10

Contents

1 STM32 USB-FS-Device firmware library . 7

1.1 USB application hierarchy . 7

1.2 USB-FS_Device peripheral interface . 9

1.2.1 usb_reg(.h, .c) . 9

1.2.2 usb_int (.h , .c) . 14

1.2.3 usb_mem (.h , .c) . 14

1.3 OTG-FS_Device peripheral interface . 14

1.3.1 otgd_fs_dev(.h, .c) . 14

1.3.2 otgd_fs_int(.h, .c) . 15

1.3.3 otgd_fs_pcd(.h, .c) . 16

1.3.4 otgd_fs_cal(.h, .c) . 16

1.3.5 otgd_fs_regs.h . 16

1.4 USB-FS-Device_Driver medium layer . 16

1.4.1 usb_init(.h,.c) . 16

1.4.2 usb_core (.h , .c) . 16

1.4.3 usb_sil(.h, .c) . 19

1.4.4 usb_type.h / usb_def.h . 20

1.5 Application interface . 20

1.5.1 usb_conf(.h) . 21

1.5.2 usb_desc (.h, .c) . 21

1.5.3 usb_prop (.h , .c) . 22

1.5.4 usb_endp (.c) . 23

1.5.5 usb_istr(.c) . 24

1.5.6 usb_pwr (.h , .c) . 24

1.6 Implementing a USB-FS_Device application using the
STM32 USB-FS-Device library . 24

1.6.1 Implementing a no-data class-specific request 24

1.6.2 How to implement a data class-specific request 24

1.6.3 How to manage data transfers in non-control endpoint 25

2 Joystick mouse demo . 26

2.1 General description . 26

2.2 STM32 low-power management in suspend mode 26

2.3 Remote Wakeup implementation . 27

UM0424 Contents

Doc ID 13465 Rev 10 3/81

3 Custom HID demo . 28

3.1 General description . 28

3.2 Descriptor topology . 28

3.3 Custom HID implementation . 29

3.3.1 LED control . 29

3.3.2 Push-button state report . 30

3.3.3 ADC-converted data transfer . 30

4 Device firmware upgrade . 31

4.1 General description . 31

4.2 DFU extension protocol . 31

4.2.1 Introduction . 31

4.2.2 Phases . 32

4.2.3 Requests . 33

4.3 DFU mode selection . 33

4.3.1 Run-time descriptor set . 33

4.3.2 DFU mode descriptor set . 34

4.4 Reconfiguration phase . 38

4.5 Transfer phase . 38

4.5.1 Requests . 38

4.5.2 Special command/protocol descriptions . 39

4.5.3 DFU state diagram . 40

4.5.4 Downloading and uploading . 41

4.5.5 Manifestation phase . 41

4.6 STM32 DFU implementation . 42

4.6.1 Supported memories . 42

4.6.2 DFU mode entry mechanism . 42

4.6.3 DFU firmware architecture . 42

4.6.4 Available DFU image for the STM32 . 43

4.6.5 How to create a DFU Image . 43

5 Mass storage demo . 44

5.1 General description . 44

5.2 Mass storage demo overview . 44

5.3 Mass storage protocol . 45

5.3.1 Bulk-only transfer (BOT) . 45

Contents UM0424

4/81 Doc ID 13465 Rev 10

5.3.2 Small computer system interface (SCSI) . 48

5.4 Mass storage demo implementations . 49

5.4.1 Hardware configuration interface . 49

5.4.2 Endpoint configurations and data management 50

5.4.3 Class-specific requests . 51

5.4.4 Standard request requirements . 52

5.4.5 BOT state machine . 52

5.4.6 SCSI protocol implementation . 53

5.4.7 Memory management . 54

5.4.8 Medium access management . 54

5.5 How to customize the mass storage demo . 55

6 Virtual COM port demo . 58

6.1 General description . 58

6.2 Virtual COM port demo proposal . 58

6.3 Software driver installation . 59

6.4 Implementation . 60

6.4.1 Hardware implementation . 60

6.4.2 Firmware implementation . 60

7 USB voice speaker demo . 62

7.1 General description . 62

7.2 Isochronous transfer overview . 62

7.3 Audio device class overview . 63

7.4 STM32 USB audio speaker demo . 64

7.4.1 General characteristics . 64

7.4.2 Implementation . 65

8 USB audio streaming demo . 72

8.1 General description . 72

8.2 STM32 USB audio streaming demo . 72

8.2.1 General characteristics . 72

8.2.2 Implementation . 73

9 Revision history . 80

UM0424 List of tables

Doc ID 13465 Rev 10 5/81

List of tables

Table 1. USB-FS_Device peripheral interface modules . 9
Table 2. Common register functions. 10
Table 3. OTG-FS_Device peripheral interface modules . 14
Table 4. otgd_fs_dev functions. 15
Table 6. USB-FS-Device_Driver medium layer modules . 16
Table 8. Power management functions . 24
Table 9. Summary of DFU class-specific requests . 33
Table 10. DFU mode device descriptor . 34
Table 11. DFU mode interface descriptor . 35
Table 12. DFU functional descriptor . 37
Table 13. Summary of DFU upgrade/upload requests . 38
Table 14. Special command descriptions . 39
Table 15. CBW packet fields . 45
Table 16. CSW packet fields . 46
Table 17. Command block status values . 46
Table 18. SCSI command set . 48
Table 19. Device descriptor . 56
Table 20. Configuration descriptor . 56
Table 21. Interface descriptors . 57
Table 22. Endpoint descriptors . 57
Table 23. Device descriptors . 67
Table 24. Configuration descriptors . 68
Table 25. Interface descriptors . 68
Table 26. Endpoint descriptors . 71
Table 27. Device descriptors . 75
Table 28. Configuration descriptors . 76
Table 29. Interface descriptors . 76
Table 30. Endpoint descriptors . 79
Table 31. Document revision history . 80

List of figures UM0424

6/81 Doc ID 13465 Rev 10

List of figures

Figure 1. USB application hierarchy . 7
Figure 2. USB-FS-Device library package organization. 9
Figure 3. Format of the four data bytes . 26
Figure 4. Custom HID topology . 29
Figure 5. Data OUT format . 29
Figure 6. Data IN Format . 30
Figure 7. Interface state transition diagram . 40
Figure 8. DFU firmware architecture . 43
Figure 9. New removable disk in Windows . 44
Figure 10. BOT state machine . 47
Figure 11. Hardware and firmware interaction diagram. 49
Figure 12. Medium access layer . 54
Figure 13. NAND write operation . 55
Figure 14. Virtual COM Port demo as USB-to-USART bridge. 58
Figure 15. Communication example . 59
Figure 16. Device Manager window. 60
Figure 17. Isochronous OUT transfer . 62
Figure 18. STM32 USB-FS_Device audio speaker demo data flow . 64
Figure 19. Audio playback flow . 65
Figure 20. Hardware and firmware interaction diagram. 66
Figure 21. Audio playback flow . 72
Figure 22. Hardware and firmware interaction diagram. 74
Figure 23. Isochronous data transfer management . 75

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 7/81

1 STM32 USB-FS-Device firmware library

This section describes the firmware interface (called USB-FS-Device Library) used to
manage the STM32 USB 2.0 full-speed device and USB 2.0 OTG full-speed device
peripherals. In the rest of the document, they will be referred to as USB-FS_Device
peripheral and OTG-FS_Device peripheral, respectively.

The USB-FS_Device peripheral is implemented in low-, medium- and high-density devices
and supports USB 2.0 full-speed device operations. The OTG-FS_Device peripheral is part
of the OTG-FS peripheral implemented in connectivity line devices and supports Host,
Device and Dual-role operations. The USB-FS-Device library supports the USB-FS_Device
peripheral and the OTG-FS_Device peripheral, both in device mode only, by means of some
hardware abstraction layers.

The main purpose of this firmware library is to provide resources to ease the development of
applications using the USB-FS_Device and OTG-FS_Device peripherals in the STM32
microcontroller families.

1.1 USB application hierarchy
Figure 1 shows the interaction between the different components of a typical USB
application and the USB-FS-Device library.

Figure 1. USB application hierarchy

User application

usb_pwr usb_desc

usb_istr usb_prop usb_endp

STM32xxxx_Std
Periph_Driver

&
CMSIS

USB-FS peripheral interface

usb_int

Hardware (STM32 + Board)
USB-FS_Device peripheral

usb_regs usb_mem

OTG-FS peripheral interface

otgd-fs_int otgd-fs_pcd otgd-fs_cal

otgd-fs_dev

usb_silusb_core
usb_init

OTG-FS_Device peripheral

A
pp

lic
at

io
n

In
te

rfa
ce

 (c
an

 b
e

m
od

ifi
ed

 b
y

us
er

)
ST

M
32

_U
SB

-F
S-

D
ev

ic
e_

D
riv

er

(n
ot

 m
od

ifi
ed

 b
y

us
er

)

Lo
w

 L
ay

er
M

ed
iu

m
 L

ay
er

H
ig

h
La

ye
r

STM32_USB-FS-Device_Lib

usb_conf

ai17544a

STM32 USB-FS-Device firmware library UM0424

8/81 Doc ID 13465 Rev 10

The USB-FS-Device library is divided into two layers:

● STM32_USB-FS_Device_Driver: this layer manages the direct communication with
the USB peripheral hardware (USB-FS_Device peripheral and OTG-FS_Device
peripheral) and the USB standard protocol. The STM32_USB-FS_Device_Driver is
compliant with the USB 2.0 specification and is separate from the standard STM32
standard peripheral library.

● Application Interface layer: this layer provides the user with a complete interface
between the library core and the final application.

When using STM32 connectivity line devices, the OTG-FS peripheral interface layer is
loaded (through defines at compile time) and used as the peripheral interface layer. The
functions of the USB-FS peripheral layer are not loaded.

When other STM32 devices are used, only the USB-FS peripheral interface layer is loaded
(through defines at compile time) and used as the peripheral interface layer.

However the core of the library (usb_core(.c,.h), usb_istr(.c,.h)...) is common and remains
unchanged for both IPs.

Warning: Any statement referencing “USB-FS_Device peripheral” is
not valid for connectivity line devices and any statement
referencing “OTG-FS_Device peripheral” is not valid for all
other devices.

Note: The application interface layer and the final application can communicate with the standard
peripherals library to manage the hardware needs of the application.

A detailed description of these layers with coding rules is provided in the next sections.

Figure 2 shows the package organization of the USB-FS-Device library with all the
demonstrations and subfolders.

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 9/81

Figure 2. USB-FS-Device library package organization

1.2 USB-FS_Device peripheral interface
Table 1 presents the USB-FS_Device peripheral interface modules.

 l

1.2.1 usb_reg(.h, .c)

The usb_regs module implements the hardware abstraction layer, it offers a set of basic
functions for accessing the USB-FS_Device peripheral registers.

Note: The available functions have two call versions:

– As a macro: the call is: _NameofFunction(parameter1,...)

– As a subroutine: the call is: NameofFunction(parameter1,...)

Table 1. USB-FS_Device peripheral interface modules

File Description

usb_reg (.h, .c) Hardware abstraction layer

usb_int.c Correct transfer interrupt service routine

usb_mem(.h,.c) Data transfer management (from/to packet memory area)

STM32 USB-FS-Device firmware library UM0424

10/81 Doc ID 13465 Rev 10

Common register functions

These functions could be used to set or to get the different common USB-FS_Device
peripheral registers.

Endpoint register functions

All operations with endpoint registers can be obtained with the SetENDPOINT and
GetENDPOINT functions. However, many functions are derived from these to offer the
advantage of a direct action on a specific field.

a) Endpoint set/get value
SetENDPOINT : void SetENDPOINT(uint8_t bEpNum,uint16_t wRegValue)

bEpNum = Endpoint number, wRegValue = Value to write

GetENDPOINT : uint16_t GetENDPOINT(uint8_t bEpNum)

bEpNum = Endpoint number

return value: the endpoint register value

b) Endpoint TYPE field

The EP_TYPE field of the endpoint register can assume the defined values below:
#define EP_BULK (0x0000) // Endpoint BULK

#define EP_CONTROL (0x0200) // Endpoint CONTROL

#define EP_ISOCHRNOUS (0x0400) // Endpoint ISOCHRONOUS

#define EP_INTERRUPT (0x0600) // Endpoint INTERRUPT

SetEPType : void SetEPType (uint8_t bEpNum, uint16_t wtype)

bEpNum = Endpoint number, wtype = Endpoint type (value from the
above define’s)

GetEPType : uint16_t GetEPType (uint8_t bEpNum)

bEpNum = Endpoint number

return value: a value from the above define’s

Table 2. Common register functions

Register Function

CNTR
void SetCNTR (uint16_t wValue)

uint16_t GetCNTR (void)

ISTR
void SetISTR (uint16_t wValue)

uint16_t GetISTR (void)

FNR uint16_t GetFNR (void)

DADDR
void SetDADDR (uint16_t wValue)

uint16_t GetDADDR (void)

BTABLE
void SetBTABLE (uint16_t wValue)

uint16_t GetBTABLE (void)

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 11/81

c) Endpoint STATUS field

The STAT_TX / STAT_RX fields of the endpoint register can assume the defined
values below:
#define EP_TX_DIS (0x0000) // Endpoint TX DISabled

#define EP_TX_STALL (0x0010) // Endpoint TX STALLed

#define EP_TX_NAK (0x0020) // Endpoint TX NAKed

#define EP_TX_VALID (0x0030) // Endpoint TX VALID

#define EP_RX_DIS (0x0000) // Endpoint RX DISabled

#define EP_RX_STALL (0x1000) // Endpoint RX STALLed

#define EP_RX_NAK (0x2000) // Endpoint RX NAKed

#define EP_RX_VALID (0x3000) // Endpoint RX VALID

SetEPTxStatus : void SetEPTxStatus(uint8_t bEpNum,uint16_t wState)

SetEPRxStatus : void SetEPRxStatus(uint8_t bEpNum,uint16_t wState)

bEpNum = Endpoint number, wState = a value from the above define’s

GetEPTxStatus : uint16_t GetEPTxStatus(uint8_t bEpNum)

GetEPRxStatus : uint16_t GetEPRxStatus(uint8_t bEpNum)

bEpNum = endpoint number

return value:a value from the above define’s

d) Endpoint KIND field
SetEP_KIND : void SetEP_KIND(uint8_t bEpNum)

ClearEP_KIND : void ClearEP_KIND(uint8_t bEpNum)

bEpNum = endpoint number

Set_Status_Out : void Set_Status_Out(uint8_t bEpNum)

Clear_Status_Out : void Clear_Status_Out(uint8_t bEpNum)

bEpNum = endpoint number

SetEPDoubleBuff : void SetEPDoubleBuff(uint8_t bEpNum)

ClearEPDoubleBuff : void ClearEPDoubleBuff(uint8_t bEpNum)

bEpNum = endpoint number

e) Correct Transfer Rx/Tx fields
ClearEP_CTR_RX : void ClearEP_CTR_RX(uint8_t bEpNum)

ClearEP_CTR_TX : void ClearEP_CTR_TX(uint8_t bEpNum)

bEpNum = endpoint number

f) Data Toggle Rx/Tx fields
ToggleDTOG_RX : void ToggleDTOG_RX(uint8_t bEpNum)

ToggleDTOG_TX : void ToggleDTOG_TX(uint8_t bEpNum)

bEpNum = endpoint number

g) Address field
SetEPAdress : void SetEPAddress(uint8_t bEpNum,uint8_t bAddr)

bEpNum = endpoint number

bAddr = address to be set

GetEPAdress : uint8_t GetEPAddress(uint8_t bEpNum)

bEpNum = endpoint number

STM32 USB-FS-Device firmware library UM0424

12/81 Doc ID 13465 Rev 10

Buffer description table functions

These functions are used in order to set or get the endpoints’ receive and transmit buffer
addresses and sizes.

a) Tx/Rx buffer address fields
SetEPTxAddr : void SetEPTxAddr(uint8_t bEpNum,uint16_t wAddr);

SetEPRxAddr : void SetEPRxAddr(uint8_t bEpNum,uint16_t wAddr);

bEpNum = endpoint number

wAddr = address to be set (expressed as PMA buffer address)

GetEPTxAddr : uint16_t GetEPTxAddr(uint8_t bEpNum);

GetEPRxAddr : uint16_t GetEPRxAddr(uint8_t bEpNum);

bEpNum = endpoint number

return value : address value (expressed as PMA buffer address)

b) Tx/Rx buffer counter fields
SetEPTxCount : void SetEPTxCount(uint8_t bEpNum,uint16_t wCount);

SetEPRxCount : void SetEPRxCount(uint8_t bEpNum,uint16_t wCount);

bEpNum = endpoint number

wCount = counter to be set

GetEPTxCount : uint16_t GetEPTxCount(uint8_t bEpNum);

GetEPRxCount : uint16_t GetEPRxCount(uint8_t bEpNum);

bEpNum = endpoint number

return value : counter value

Double-buffered endpoints functions

To obtain high data-transfer throughput in bulk or isochronous modes, double-buffered mode
has to be programmed. In this operating mode some fields of the endpoint registers and
buffer description table cells have different meanings.
To ease the use of this feature several functions have been developed.

SetEPDoubleBuff: An endpoint programmed to work in bulk mode can be set as double-
buffered by setting the EP-KIND bit. The function SetEPDoubleBuff() accomplishes this
task.

SetEPDoubleBuff : void SetEPDoubleBuff(uint8_t bEpNum);
bEpNum = endpoint number

FreeUserBuffer: In double-buffered mode the endpoints become mono-directional and
buffer description table cells of the unused direction are applied to handle a second buffer.

Addresses and counters must be handled in a different way. Rx and Tx Addresses and
counter cells become Buffer0 and Buffer1 cells. Functions dedicated to this operating
mode are provided for in the library.

During a bulk transfer the line fills one buffer while the other buffer is reserved to the
application. A user application has to process data before the arrival of bulk needing a
buffer. The buffer reserved to the application has to be freed in time.

To free the buffer in use from the application the FreeUserBuffer function is provided:
FreeUserBuffer: void FreeUserBuffer(uint8_t bEpNum, uint8_t bDir);

bEpNum = endpoint number

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 13/81

a) Double buffer addresses

These functions set or get buffer address value in the buffer description table for
double buffered mode.

SetEPDblBuffAddr : void SetEPDblBuffAddr(uint8_t
bEpNum,uint16_t wBuf0Addr,uint16_t wBuf1Addr);

SetEPDblbuf0Addr : void SetEPDblBuf0Addr(uint8_t
bEpNum,uint16_t wBuf0Addr);

SetEPDblbuf1Addr : void SetEPDblBuf1Addr(uint8_t
bEpNum,uint16_t wBuf1Addr);

bEpNum = endpoint number

wBuf0Addr, wBuf1Addr = buffer addresses (expressed as PMA
buffer addresses)

GetEPDblBuf0Addr : uint16_t GetEPDblBuf0Addr(uint8_t
bEpNum);

GetEPDblbuf1Addr : uint16_t GetEPDblBuf1Addr(uint8_t
bEpNum);

bEpNum = endpoint number

return value : buffer addresses

b) Double buffer counters

These functions set or get buffer counter value in the buffer description table for
double buffered mode.
SetEPDblBuffCount: void SetEPDblBuffCount(uint8_t bEpNum, uint8_t
bDir, uint16_t wCount);

SetEPDblBuf0Count: void SetEPDblBuf0Count(uint8_t bEpNum, uint8_t
bDir, uint16_t wCount);

SetEPDblBuf1Count: void SetEPDblBuf1Count(uint8_t bEpNum, uint8_t
bDir, uint16_t wCount);

bEpNum = endpoint number

bDir = endpoint direction

wCount = buffer counter

GetEPDblBuf0Count : uint16_t GetEPDblBuf0Count(uint8_t bEpNum);

GetEPDblBuf1Count : uint16_t GetEPDblBuf1Count(uint8_t bEpNum);

bEpNum = endpoint number

return value : buffer counter

c) Double buffer STATUS

The simple and double buffer modes use the same functions to manage the
Endpoint STATUS except for the STALL status for double buffer mode. This
functionality is managed by the function:
SetDouBleBuffEPStall: void SetDouBleBuffEPStall(uint8_t
bEpNum,uint8_t bDir)

bEpNum = endpoint number

bDir = endpoint direction

STM32 USB-FS-Device firmware library UM0424

14/81 Doc ID 13465 Rev 10

1.2.2 usb_int (.h , .c)

The usb_int module handles the correct transfer interrupt service routines; it offers the link
between the USB device protocol events and the library.

The STM32 USB-FS_Device peripheral provides two correct transfer routines:

● Low-priority interrupt: managed by the function CTR_LP() and used for control,
interrupt and bulk (in simple buffer mode).

● High-priority interrupt: managed by the function CTR_HP() and used for faster transfer
mode like Isochronous and bulk (in double buffer mode).

1.2.3 usb_mem (.h , .c)

The usb_mem copies a buffer data from the user memory area to the packet memory area
(PMA) and vice versa. It provides two differents functions:

void UserToPMABufferCopy(uint8_t *pbUsrBuf,uint16_t wPMABufAddr, uint16_t wNBytes);

void PMAToUserBufferCopy(uint8_t *pbUsrBuf,uint16_t wPMABufAddr, uint16_t wNBytes);

Where:

– pbUsrBuf is the pointer to the user memory area generally in the product’s SRAM.

– wPMABufAddr is the address in PMA (512-byte packet memory area dedicaded to
USB).

– wNBytes is the number of bytes to be copied.

1.3 OTG-FS_Device peripheral interface
Table 3 presents the OTG-FS_Device peripheral interface modules.

 l

1.3.1 otgd_fs_dev(.h, .c)

The otgd_fs_dev module provides the main high layer functions for handling the OTG-
FS_Device peripheral in device mode. It also contains the main functions for handling
endpoints.

The main functions are listed in Table 4.

Table 3. OTG-FS_Device peripheral interface modules

File Description

otgd_fs_dev (.h , .c) OTG-FS_Device device mode high-layer management

otgd_fs_int (.h , .c) OTG-FS_Device interrupt handlers

otgd_fs_pcd (.h , .c) OTG-FS_Device device mode low-layer management

otgd_fs_cal (.h , .c) OTG-FS_Device peripheral control and status management (low layer).

otgd_fs_regs.h OTG-FS_Device peripheral register definitions

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 15/81

 l

1.3.2 otgd_fs_int(.h, .c)

The otgd_fs_int module handles the different interrupt service routines generated by the
OTG-FS_Device peripheral. It provides the link between the USB protocol events and the
library core.

The STM32 OTG-FS_Device peripheral provides interrupt routines as listed in Table 5.

Table 4. otgd_fs_dev functions

Function Description

void OTGD_FS_Dev_Init(void)
Resets and initializes all the OTG-FS_Device
peripheral and initializes endpoint 0.

void OTG_DEV_EP_Init(uint8_t bEpAdd, uint8_t
bEpType, uint16_t wEpMaxPackSize)

Configures and enables the selected endpoint
(this function is not used for endpoint 0).

void OTGD_FS_Dev_Connect(void)
Connects the OTG-FS_Device peripheral through
the internal integrated pull-up resistors.

void OTGD_FS_Dev_Disconnect(void)
Disconnects the OTG-FS_Device peripheral
through the internal integrated pull-up resistors.

uint32_t OTGD_FS_GetEPTxStatus(uint8_t
bEpNum)

Returns the transmitting status of the selected
endpoint (valid, stall, NaK, disable).

uint32_t OTGD_FS_GetEPRxStatus(uint8_t
bEpNum)

Returns the receiving status of the selected
endpoint (valid, stall, NaK, disable).

void OTGD_FS_SetEPTxStatus(uint8_t
bEpNum, uint32_t Status)

Configure a selected transmitting status for the
selected endpoint (valid, stall, NaK, disable).

void OTGD_FS_SetEPRxStatus(uint8_t
bEpNum, uint32_t Status)

Configure a selected receiving status for the
selected endpoint (valid, stall, NaK, disable).

Table 5. otgd_fs_int functions

Function Description

uint32_t OTGD_FS_HandleInEP_ISR(void); Handles the IN endpoint interrupts.

uint32_t OTGD_FS_HandleOutEP_ISR(void); Handles the OUT endpoint interrupts.

uint32_t OTGD_FS_HandleSof_ISR(void); Handles the Start Of Frame interrupt.

uint32_t
OTGD_FS_HandleRxStatusQueueLevel_ISR(voi
d);

Handles the Rx Status Queue level interrupt
(data received in the internal USB RAM).

uint32_t
OTGD_FS_HandleEnumDone_ISR(void);

Handles the Enumeration Done interrupt.

uint32_t OTGD_FS_HandleUsbReset_ISR(void); Handles the USB reset event interrupt.

uint32_t OTGD_FS_HandleWakeup_ISR(void); Handles the wakeup event interrupt.

uint32_t
OTGD_FS_HandleUSBSuspend_ISR(void);

Handles the Suspend event interrupt.

uint32_t OTGD_FS_Handle_EOPF_ISR(void);
Handles the expected End Of Periodic Frame
interrupt.

STM32 USB-FS-Device firmware library UM0424

16/81 Doc ID 13465 Rev 10

1.3.3 otgd_fs_pcd(.h, .c)

The otgd_fs_pcd module is the low layer interface for the OTG-FS_Device peripheral in
device mode. It handles the necessary operations on the hardware in device mode only.

1.3.4 otgd_fs_cal(.h, .c)

The otgd_fs_cal module is the low layer interface for the OTG-FS_Device peripheral core. It
handles all the necessary functions for the common control and status registers, as well as
for peripheral configuration and initialization.

1.3.5 otgd_fs_regs.h

The otgd_fs_regs file contain the register definitions for the OTG-FS_Device peripheral.

1.4 USB-FS-Device_Driver medium layer
Table 1 presents the USB-FS-Device_Driver medium layer modules:

 l

1.4.1 usb_init(.h,.c)

This module sets initialization routines and global variables that will be used in the library.

1.4.2 usb_core (.h , .c)

This module is the “kernel” of the library. It implements all the functions described in chapter
9 of the USB 2.0 specification.

uint32_t
OTGD_FS_Handle_PTXFEmpty_ISR(void);

Handles the Periodic Tx FIFO Empty interrupt.

uint32_t
OTGD_FS_Handle_EarlySuspend_ISR(void);

Handles the Early Suspend event interrupt.

uint32_t OTGD_FS_Handle_NPTxFE_ISR(void);
Handles the Non Periodic Tx FIFO empty
interrupt.

Table 5. otgd_fs_int functions (continued)

Function Description

Table 6. USB-FS-Device_Driver medium layer modules

File Description

usb_init (.h,.c) USB device initialization global variables

usb_core (.h , .c)
USB protocol management (compliant with chapter 9 of the USB 2.0
specification)

usb_sil (.h,.c)
Simplified functions for read & write accesses to the endpoints (abstraction
layer for both USB-FS_Device and OTG-FS_Device peripherals)

usb_def.h / usb_type.h USB definitions and Ttypes used in the library

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 17/81

The available subroutines cover handling of USB standard requests related to the control
endpoint (ENDP0), offering the necessary code to accomplish the sequence of enumeration
phase.

A state machine is implemented in order to process the different stages of the setup
transactions.

The USB core module also implements a dynamic interface between the standard request
and the user implementation using the structure User_Standard_Requests.

The USB core dispatches the class specific requests and some bus events to user program
whenever it is necessary. User handling procedures are given in the Device_Property
structure.

The different data and function structures used by the kernel are described in the following
paragraphs.

1. Device table structure

The core keeps device level information in the Device_Table structure. Device_Table
is of the type: DEVICE.
typedef struct _DEVICE {
 uint8_t Total_Endpoint;
 uint8_t Total_Configuration;
} DEVICE;

2. Device information structure

The USB core keeps the setup packet from the host for the implemented USB Device in
the Device_Info structure. This structure has the type: DEVICE_INFO.
typedef struct _DEVICE_INFO {
 uint8_t USBbmRequestType;
 uint8_t USBbRequest;
 uint16_t_uint8_t USBwValues;
 uint16_t_uint8_t USBwIndexs;
 uint16_t_uint8_t USBwLengths;
 uint8_t ControlState;
 uint8_t Current_Feature;
 uint8_t Current_Configuration;
 uint8_t Current_Interface;

uint8_t Current_AlternateSetting;
 ENDPOINT_INFO Ctrl_Info;
} DEVICE_INFO;

An union uint16_t_uint8_t is defined to easily access some fields in the
DEVICE_INFO in either uint16_t or uint8_t format.
typedef union {
 uint16_t w;
 struct BW {
 uint8_t bb1;
 uint8_t bb0;
 } bw;
} uint16_t_uint8_t;

STM32 USB-FS-Device firmware library UM0424

18/81 Doc ID 13465 Rev 10

Description of the structure fields:

– USBbmRequestType is the copy of the bmRequestType of a setup packet

– USBbRequest is the copy of the bRequest of a setup packet

– USBwValues is defined as type: uint16_t_uint8_t and can be accessed through
3 macros:

#define USBwValue USBwValues.w
#define USBwValue0 USBwValues.bw.bb0
#define USBwValue1 USBwValues.bw.bb1

USBwValue is the copy of the wValue of a setup packet
USBwValue0 is the low byte of wValue, and USBwValue1 is the high byte of
wValue.

– USBwIndexs is defined as USBwValues and can be accessed by 3 macros:

#define USBwIndex USBwIndexs.w

#define USBwIndex0 USBwIndexs.bw.bb0

#define USBwIndex1 USBwIndexs.bw.bb1

USBwIndex is the copy of the wIndex of a setup packet
USBwIndex0 is the low byte of wIndex, and USBwIndex1 is the high byte of
wIndex.

– USBwLengths is defined as type: uint16_t_uint8_t and can be accessed
through 3 macros:
#define USBwLength USBwLengths.w
#define USBwLength0 USBwLengths.bw.bb0
#define USBwLength1 USBwLengths.bw.bb1

USBwLength is the copy of the wLength of a setup packet
USBwLength0 and USBwLength1 are the low and high bytes of wLength,
respectively.

– ControlState is the state of the core, the available values are defined in
CONTROL_STATE.

– Current_Feature is the device feature at any time. It is affected by the
SET_FEATURE and CLEAR_FEATURE requests and retrieved by the
GET_STATUS request. User code does not use this field.

– Current_Configuration is the configuration the device is working on at any time.
It is set and retrieved by the SET_CONFIGURATION and GET_CONFIGURATION
requests, respectively.

– Current_Interface is the selected interface.

– Current_Alternatesetting is the alternative setting which has been selected for
the current working configuration and interface. It is set and retrieved by the
SET_INTERFACE and GET_INTERFACE requests, respectively.

– Ctrl_Info has type ENDPOINT_INFO.

Since this structure is used everywhere in the library, a global variable
pInformation is defined for easy access to the Device_Info table, it is a pointer to
the DEVICE_INFO structure.

Actually, pInformation = &Device_Info.

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 19/81

3. Device property structure

The USBcore dispatches the control to the user program whenever it is necessary.
User handling procedures are given in an array of Device_Property. The structure has
the type: DEVICE_PROP:
typedef struct _DEVICE_PROP {

void (*Init)(void);

void (*Reset)(void);

void (*Process_Status_IN)(void);

void (*Process_Status_OUT)(void);

RESULT (*Class_Data_Setup)(uint8_t RequestNo);

RESULT (*Class_NoData_Setup)(uint8_t RequestNo);

RESULT (*Class_Get_Interface_Setting)(uint8_t Interface,uint8_t
AlternateSetting);

uint8_t* (*GetDeviceDescriptor)(uint16_t Length);

uint8_t* (*GetConfigDescriptor)(uint16_t Length);

uint8_t* (*GetStringDescriptor)(uint16_t Length);

void* RxEP_buffer; /* This field is not used in current library version.
It is kept only for compatibility with previous versions */

uint8_t MaxPacketSize;

} DEVICE_PROP;

4. User standard request structure

The User Standard Request Structure is the interface between the user code and the
management of the standard request. The structure has the type:
USER_STANDARD_REQUESTS:
typedef struct _USER_STANDARD_REQUESTS {

void(*User_GetConfiguration)(void);

void(*User_SetConfiguration)(void);

void(*User_GetInterface)(void);

void(*User_SetInterface)(void);

void(*User_GetStatus)(void);

void(*User_ClearFeature)(void);

void(*User_SetEndPointFeature)(void);

void(*User_SetDeviceFeature)(void);

void(*User_SetDeviceAddress)(void);

} USER_STANDARD_REQUESTS;

If the user wants to implement specific code after receiving a standard USB Device
request he has to use the corresponding functions in this structure.

An application developer must implement three structures having the DEVICE_PROP,
Device_Table and USER_STANDARD_REQUEST types in order to manage class
requests and application specific controls. The different fields of these structures are
described in Section 1.4.4: usb_type.h / usb_def.h.

1.4.3 usb_sil(.h, .c)

The usb_sil module implements an additional abstraction layer for USB-FS_Device and
OTG-FS_Device peripherals. It offers simple functions for accessing the Endpoints for Read
and Write operations.

STM32 USB-FS-Device firmware library UM0424

20/81 Doc ID 13465 Rev 10

Endpoint simplified write function

The write operation to an endpoint can be performed through the following function:

void USB_SIL_Write(uint32_t EPNum, uint8_t* pBufferPointer, uint32_t
wBufferSize);

The parameters of this function are:

● EPNum: Number of the IN endpoint related to the write operation

● pBufferPointer: Pointer to the user buffer to be written to the IN endpoint.

● wBufferSize: Number of data bytes to be written to the IN endpoint.

Depending on the peripheral interface, this function gets the address of the endpoint buffer
and performs the packet write operation.

Endpoint simplified read function

The read operation from an endpoint can be performed through the following function:

uint32_t USB_SIL_Read(uint32_t EPNum, uint8_t* pBufferPointer);

The parameters of this function are:

● EPNum: Number of the OUT endpoint related to the read operation

● pBufferPointer: Pointer to the user buffer to be filled with the data read form the OUT
endpoint.

Depending on the peripheral interface, this function performs two successive operations:

● Gets the number of data received from the host on the related OUT endpoint

● Copies the received data from the USB dedicated memory to the pBufferPointer
address.

Then the function returns the number of received data bytes to the user application.

1.4.4 usb_type.h / usb_def.h

These files provides the main types and USB definitions used in the library.

1.5 Application interface
The modules of the Application interface are provided as a template, they must be tailored
by the application developer for each application. Table 7 shows the different modules used
in the application interface.

Table 7. Application interface modules

File Description

usb_conf.h USB-FS_Device configuration file

usb_desc (.h, .c) USB-FS_Device descriptors

usb_prop (.h, .c) USB-FS_Device application-specific properties

usb_endp.c Correct transfer interrupt handler routines for non-control endpoints

usb_istr (.h,.c) USB-FS_Device interrupt handler functions

usb_pwr (.h, .c) USB-FS_Device power and connection management functions

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 21/81

1.5.1 usb_conf(.h)

The usb_conf.h is used to customize the USB demos and to configure the device as follows:

● Define the number of endpoints to be used (through the define EP_NUM).

● Enable the use of Endpoints and event callback routines by commenting the relative
callback define (i.e. comment the define EP1_IN_Callback to enable and use this
function when a correct transfer occurs on endpoint 1, comment the define
INTR_SOFINTR_Callback in order to use and implement this function when an SOF
interrupt occurs...). When a callback is to be used, its relative define in usb_conf.h file
should be commented. Then, it should be implemented with the same name in the user
application (no need to declare the callback function prototype as it is already declared
in the usb_istr.h file).

● For USB-FS_Device peripheral:

– Configure the BTABLE and all endpoint addresses in the PMA (by modifying
and/or adding relative address defines: BTABLE_ADDRESS, ENDP0_RXADDR,
ENDP0_TXADDR ...).

– Define the interrupts to enable them through the interrupt mask IMR_MSK.

● For OTG-FS_Device peripheral

– Configure the allocated size for the USB device FIFO by modifying the defines
RX_FIFO_SIZE, TX0_FIFO_SIZE, TX1_FIFO_SIZE ...

– Configure the interrupts to enable them by uncommenting the relative defines (i.e.
uncomment INTR_SOFINTR define to enable the DOF interrupt ...).

1.5.2 usb_desc (.h, .c)

The usb_desc.c file should contain all the USB descriptors related to the application. The
user has to set these descriptors according to the application proprieties and class.

In all available demos in the “STM32 USB-FS_Device developer kit” there is an example
implementing a unique serial number string descriptor based on the STM32 Device Unique
ID register (12 digits).

The default value of the serial number string descriptor is “STM32” and during the USB
initialization the Get_SerialNum() function reads the Device Unique ID register and sets
the serial number string descriptor.

For more details regarding the Device Unique ID register, please refer to the STM32
reference manual (RM0008) or the STM32L15xx reference manual (RM0038).

STM32 USB-FS-Device firmware library UM0424

22/81 Doc ID 13465 Rev 10

1.5.3 usb_prop (.h , .c)

The usb_prop module is used for implementing the Device_Property, Device_Table and
USER_STANDARD_REQUEST structures used by the USB core.

Device property implementation

The device property structure fields are described below:

● void Init(void): Init procedure of the USB-FS_Device or OTG-FS_Device peripheral. It
is called once at the start of the application to manage the initialization process.

● void Reset(void): Reset procedure of the USB peripheral. It is called when the
macrocell receives a RESET signal from the bus. The user program should set up the
endpoints in this procedure, in order to set the default control endpoint (only for the
USB-FS_Device peripheral) and enable it to receive.

● void Process_Status_IN(void): Callback procedure, it is called when a status in a
stage is finished. The user program can take control with this callback to perform class-
and application-related processes.

● void Process_Status_OUT(void): Callback procedure, it is called when a status out
stage is finished. As with Process_Status_IN, the user program can perform actions
after a status out stage.

● RESULT (see note below) *(Class_Data_Setup)(uint8_t RequestNo): Callback
procedure, it is called when a class request is recognized and this request needs a
data stage. The core cannot process such requests. In this case, the user program gets
the chance to use custom procedures to analyze the request, prepare the data and
pass the data to the USB-FS_Device core for exchange with the host. The parameter
RequestNo indicates the request number. The return parameter of this function has the
type: RESULT. It indicates the result of the request processing to the core.

● RESULT (*Class_NoData_Setup)(uint8_t RequestNo) Callback procedure, it is
called when a non-standard device request is recognized, that does not need a data
stage. The core cannot process such requests. The user program can have the chance
to use custom procedures to analyze the request and take action. The return
parameter of this function has type: RESULT. It indicates the result of the request
processing to the core.

● RESULT (*Class_GET_Interface_Setting)(uint8_t Interface, uint8_t
AlternateSetting): This routine is used to test the received set interface standard
request. The user must verify the "Interface" and "AlternateSetting" according to their
own implementation and return the USB_UNSUPPORT in case of error in these two
fields.

● uint8_t* GetDeviceDescriptor(uint16_t Length): The core gets the device descriptor.

● uint8_t* GetConfigDescriptor(uint16_t Length): The core gets the configuration
descriptor.

● uint8_t* GetStringDescriptor(uint16_t Length): The core gets the string descriptor.

● uint16_t MaxPacketSize: The maximum packet size of the device default control
endpoint.

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 23/81

Note: The RESULT type is the following:
typedef enum _RESULT {

USB_SUCCESS = 0,/* request process sucessfully */

USB_ERROR, /* error

USB_UNSUPPORT, /* request not supported

USB_NOT_READY/* The request process has not been finished,*/

/* endpoint will be NAK to further requests*/

} RESULT;

Device endpoint implementation

Description of the structure fields:

● Total_Endpoint is the number of endpoints the USB application uses.

● Total_Configuration is the number of configurations the USB application has.

USER_STANDARD_REQUEST implementation

This structure is used to manage the user implementation after receiving all standard
requests (except Get descriptors). The fields of this structure are:

● void (*User_GetConfiguration)(void): Called after receiving the Get Configuration
Standard request.

● void (*User_SetConfiguration)(void): Called after receiving the Set Configuration
Standard request.

● void (*User_GetInterface)(void): Called after receiving the Get interface Standard
request.

● void (*User_SetInterface)(void): Called after receiving the Set interface Standard
request.

● void (*User_GetStatus)(void): Called after receiving the Get interface Standard
request.

● void (*User_ClearFeature)(void): Called after receiving the Clear Feature Standard
request.

● void (*User_SetEndPointFeature)(void): Called after receiving the set Feature
Standard request (only for endpoint recipient).

● void (*User_SetDeviceFeature)(void): Called after receiving the set Feature Standard
request (only for Device recipient).

● void (*User_SetDeviceAddress)(void): Called after receiving the set Address
Standard request.

1.5.4 usb_endp (.c)

USB_endp module is used for:

● Handling the CTR “correct transfer” routines for endpoints other than endpoint 0 (EP0)
for the USB-FS_Device peripheral.

● Handling the “transfer complete” interrupt routines for endpoints other than endpoint 0
(EP0) for the OTG-FS_Device peripheral. It also allows handling the Rx FIFO level
interrupts for isochronous endpoints.

For enabling the processing of these callback handlers a pre-processor switch named
EPx_IN_Callback (for IN transfer) or EPx_OUT_Callback (for OUT transfer) or

STM32 USB-FS-Device firmware library UM0424

24/81 Doc ID 13465 Rev 10

EPx_RX_ISOC_CALLBACK (for Isochronous Out transfer) must be defined in the
USB_conf.h file.

1.5.5 usb_istr(.c)

USB_istr module provides a function named USB_Istr() which handles all USB
interrupts.

For each USB interrupt source, a callback routine named XXX_Callback (for example,
RESET_Callback) is provided in order to implement a user interrupt handler. To enable the
processing of each callback routines, a preprocessor switch named XXX_Callback must
be defined in the USB configuration file USB_conf.h.

1.5.6 usb_pwr (.h , .c)

This module manages the power management of the USB device. It provides the functions
shown in Table 8.

1.6 Implementing a USB-FS_Device application using the
STM32 USB-FS-Device library

1.6.1 Implementing a no-data class-specific request

All class-specific requests without a data transfer phase implement the field
RESULT (*Class_NoData_Setup)(uint8_t RequestNo) of the structure device
property. The USBbRequest of the request is available in the RequestNo parameter and all
other request fields are stored in the device info structure.

The user has to test all request fields. If the request is compliant with the class to implement,
the function returns the USB_SUCCESS result. However if there is a problem in the request,
the function returns the UNSUPPORT result status and the library responds with a STALL
handshake.

1.6.2 How to implement a data class-specific request

In the event of class requests requiring a data transfer phase, the user implementation
reports to the USB-FS-Device library the length of the data to transfer and the data location
in the internal memory (RAM if the data is received from the host and, RAM or Flash
memory if the data is sent to the host). This type of request is managed in the function:
RESULT (*Class_Data_Setup)(uint8_t RequestNo).

For each class data request the user has to create a specific function with the format:

uint8_t* My_First_Data_Request (uint16_t Length)

Table 8. Power management functions

Function name Description

RESULT Power_on(void) Handle switch-on conditions

RESULT Power_off(void) Handle switch-off conditions

void Suspend(void) Sets suspend mode operation conditions

void Resume(RESUME_STATE eResumeSetVal) Handle wakeup operations

UM0424 STM32 USB-FS-Device firmware library

Doc ID 13465 Rev 10 25/81

If this function is called with the Length parameter equal to zero, it sets the
pInformation->Ctrl_Info.Usb_wLength field with the length of data to transfer and
returns a NULL pointer. In other cases it returns the address of the data to transfer. The
following C code shows a simple example:

 uint8_t* My_First_Data_Request (uint16_t Length)
{

if (Length == 0)
{

 pInformation->Ctrl_Info.Usb_wLength = My_Data_Length;
 return NULL;
 }
 else
 return (&My_Data_Buffer);
}

The function RESULT (*Class_Data_Setup)(uint8_t RequestNo) manages all data
requests as described in the following C code:

RESULT Class_Data_Setup(uint8_t RequestNo)
{

uint8_t*(*CopyRoutine)(uint16_t);
 CopyRoutine = NULL;

if (My_First_Condition)// test the filds of the first request
CopyRoutine = My_First_Data_Request;

else if(My_Second_Condition) // test the filds of the second request
 CopyRoutine = My_Second_Data_Request;
/*
... same implementation for each class data requests
...
*/
if (CopyRoutine == NULL) return USB_UNSUPPORT;

pInformation->Ctrl_Info.CopyData = CopyRoutine;
pInformation->Ctrl_Info.Usb_wOffset = 0;
(*CopyRoutine)(0);
return USB_SUCCESS;

} /*End of Class_Data_Setup */

1.6.3 How to manage data transfers in non-control endpoint

The management of the data transfer using a pipe that is not the default one (Endpoint 0)
can be managed in the usb_end.c file.

The user has to uncomment the line corresponding to the endpoint (with direction) in the file
usb_conf.h.

Joystick mouse demo UM0424

26/81 Doc ID 13465 Rev 10

2 Joystick mouse demo

This demo runs on the STMicroelectronics STM3210B-EVAL, STM3210C-EVAL,
STM3210E-EVAL and STM32L152-EVAL evaluation boards and can be easily tailored to
any other hardware.

To select the STMicroelectronics evaluation board used to run the demo, uncomment the
corresponding line in the platform_config.h file.

2.1 General description
A USB mouse (human interface device –HID– class) is a simple example of a complete USB
application. The joystick mouse uses only one interrupt endpoint (endpoint 1 in the IN
direction). After normal enumeration, the host requests the HID report descriptor of the
mouse. This specific descriptor is presented (with standard descriptors) in the usb_desc.c
file.

To get the mouse pointer position the host requests four bytes of data with the format shown
in Figure 3, using pipe 1 (endpoint 1).

Figure 3. Format of the four data bytes

The purpose of the mouse demo is to set the X and Y values according to the user actions
with a joystick button. The JoyState() function gets the user actions and returns the
direction of the mouse pointer. The Joystick_Send() function formats the data to send to
the host and validates the data transaction phase.

Note: See the hw_config.c file for details on the functions.

2.2 STM32 low-power management in suspend mode
To give an example of power management during the USB suspend/resume events, the
joystick mouse demo supports the STM32 Stop mode entry and exit.

The STM32 Stop mode is based on the Cortex-M3 deepsleep mode combined with
peripheral clock gating. In Stop mode, all clocks in the 1.8 V domain are stopped, the PLLs,
HSI RC and HSE crystal oscillators are disabled. Wakeup from the Stop mode is possible
only using one EXTI line in interrupt or event mode.

In this demo, during Stop mode, the voltage regulator is configured in low-power mode to
reduce the power consumption and EXTI line 18 (USB-FS_Device/OTG-FS_Device Wakeup
line) is used for wakeup in interrupt mode.

When a suspend event occurs on the bus, the USB-FS-Device library dispatches the
request and calls the Enter_LowPowerMode() function (file hw_config.c). In this function,
the STM32 is put in Stop mode.

UM0424 Joystick mouse demo

Doc ID 13465 Rev 10 27/81

The STM32 remains in Stop mode until it receives a wakeup (resume) event on the bus. In
this case, EXTI line 18 is activated and wakes up the STM32. After wakeup, the USB-FS-
Device library calls the Leave_LowPowerMode() function (file hw_config.c) to reconfigure
the clock (re-enable the HSE and PLL).

To test this feature and measure the power consumption during USB-FS_Device suspend,
connect an ammeter to the VDD jumper (jumper JP9 in the STM3210B-EVAL board, jumper
JP12 in the STM3210E-EVAL board, jumper J23 in the STM3210C-EVAL board or jumper
J4 in the STM32L152-EVAL board) and, on the PC side, use the USB HS Electrical Test
Toolkit available for free from usb.org to put the STM32 in the suspend/resume state.

2.3 Remote Wakeup implementation
Remote wakeup is the ability of a USB device to bring a suspended bus back to the active
condition. A device that supports remote wakeup reports this capability to the PC using the
bmAttributes field of the configuration descriptor (bit D5 set to 1).

In the Joystick demo the key push-button is used as the remote wakeup source. The key
button is connected to EXTI line 9 (GPIO PB.09) in the STM3210B-EVAL and
STM3210CEVAL, to EXTI line 8 (GPIO PG.08) in the STM3210E-EVAL and to EXTI line 0
(GPIO PA.00) in the STM32L152-EVAL.

When the key is pressed, the corresponding EXTI ISR is called to initiate the USB device
power management state machine using the Resume() function. Note that remote wakeup
could be disabled by the PC host using the set_feature request, so the EXTI ISR tests the
current feature and sends the remote wake-up signal to the PC only if the feature is enabled.

Custom HID demo UM0424

28/81 Doc ID 13465 Rev 10

3 Custom HID demo

This demo runs on the STMicroelectronics STM3210B-EVAL, STM3210C-EVAL,
STM3210E-EVAL and STM32L152-EVAL evaluation boards and can be easily tailored to
any other hardware.

To select the STMicroelectronics evaluation board used to run the demo, uncomment the
corresponding line in the platform_config.h file.

3.1 General description
The HID (human interface device) class primarily consists of devices that are used by
humans to control the operation of computer systems. Typical examples of HID class
devices are standard mouse devices, keyboards, Bluetooth adaptors etc.

For more details on the HID device class, please refer to the “Device Class Definition for HID
1.11” available from the usb.org website.

The custom HID demo is a simple HID demo provided with a small PC applet to give an
example of how to create a customized HID based on the native Windows HID driver. It
consists of simple data exchanges between the STM32 evaluation board and the PC Host
using two interrupt pipes (IN and OUT).

The exchanged data are related to LED commands, push-button state reports and ADC
conversion values.

For more details on how to use the PC applet of the custom HID, please refer to the UM0551
user manual “USB HID demonstrator” available from the STMicroelectronics microcontroller
website www.st.com.

3.2 Descriptor topology
The custom HID topology is based on two interrupt pipes used to handle the data transfer
for seven different reports. The following chart shows the custom HID topology.

UM0424 Custom HID demo

Doc ID 13465 Rev 10 29/81

Figure 4. Custom HID topology

Each report descriptor is related to a specific component in the evaluation board (LEDs,
Push-buttons or ADC). The following section describes the functionality of these reports.

3.3 Custom HID implementation

3.3.1 LED control

The STM32 evaluation boards have four LEDs. In the custom HID demo, each LED
corresponds to a specific report (reports 1 to 4) and the LED states (ON/OFF) are set by the
PC applet.

When the device receives data on endpoint 1 OUT, the EP1_OUT_Callback() function is
called to dispatch the received state to the corresponding LED according to the report
number. The received data have the format shown in Figure 5, where:

● Report Num: report number from 1 to 4.

● LED state:

– 0 -> LED off

– 1 -> LED on

Figure 5. Data OUT format

Custom HID demo UM0424

30/81 Doc ID 13465 Rev 10

3.3.2 Push-button state report

The states of the Key and Tamper push-buttons on the STM32 evaluation boards (except for
the STM32L152-EVAL board where Right and Left joystick buttons are used) are reported to
the PC host using the endpoint 1 IN.

The Key push-button (or Right push-button on the STM32L152-EVAL board) corresponds to
Report 5 and the Tamper push-button (or Left push-button on the STM32L152 board) to
Report 6. When one of the two push-buttons is pressed, the device sends the related report
number and the push-button state to the host. Figure 6 shows the used format, where:

● Report Num: report number 5 or 6.

● Button state: 1 -> button pressed.

Figure 6. Data IN Format

3.3.3 ADC-converted data transfer

This part of the demo consists in transferring the result of the converted voltage connected
to the potentiometer of the evaluation board to the PC host. The ADC is configured in
continuous mode with DMA data transfer to a RAM variable (ADC_ConvertedValueX). After
each conversion the converted value is tested against an old one
(ADC_ConvertedValueX_1) and if there is a difference between the two values
(potentiometer value changed by a user), the new value is sent to the PC using the endpoint
1 IN.

Note: The data format is the same as the one used for the push-buttons, but the report number (7)
is followed by the MSB of the ADC conversion result.

UM0424 Device firmware upgrade

Doc ID 13465 Rev 10 31/81

4 Device firmware upgrade

This demo runs on the STMicroelectronics STM3210B-EVAL, STM3210C-EVAL,
STM3210E-EVAL and STM32L152-EVAL evaluation boards and can be easily tailored to
any other hardware.

To select the STMicroelectronics evaluation board used to run the demo, uncomment the
corresponding line in the platform_config.h file.

4.1 General description
This part of the document presents the implementation of a device firmware upgrade (DFU)
capability in the STM32 microcontroller. It follows the DFU class specification defined by the
USB Implementers Forum for reprogramming an application through USB. The DFU
principle is particularly well suited to USB applications that need to be reprogrammed in the
field:

The same USB connector can be used for both the standard operating mode and the
reprogramming process.

This operation is made possible by the IAP capability featured by most of the
STMicroelectronics USB Flash microcontrollers, which allows a Flash MCU to be
reprogrammed by any communication channel.

The DFU process, like any other IAP process, is based on the execution of firmware located
in one small part of the Flash memory and that manages the erase and program operations
of the others Flash memory modules depending on the device capabilities: it could be the
main program/Code Flash, data Flash/EEPROM or any other memory connected to the
microcontroller even a serial Flash (Through SPI or I2C etc.). For the STM32 the DFU Demo
is used to program the internal Flash memory and the SPI Flash memory available in the
STM3210B-EVAL evaluation board. Likewise, it is used to program the internal Flash
memory, the SPI Flash memory and the NOR Flash memory available in the STM3210E-
EVAL board. Also, it is used to program only the internal Flash memory for the STM3210C-
EVAL and STM32L152-EVAL evaluation boards.

Refer to the UM0412, DfuSe USB device firmware upgrade STMicroelectronics extension,
for more details on the driver installation and PC user interface.

Note: If the internal Flash memory where the user application is to be programmed is write- or/and
read-protected, it is required to first disable the protection prior to using the DFU.

4.2 DFU extension protocol

4.2.1 Introduction

The DFU class uses the USB as a communication channel between the microcontroller and
the programming tool, generally a PC host. The DFU class specification states that, all the
commands, status and data exchanges have to be performed through Control Endpoint 0.
The command set, as well as the basic protocol are also defined, but the higher level
protocol (Data format, error message etc.) remain vendor-specific. This means that the DFU
class does not define the format of the data transferred (.s19, .hex, pure binary etc.).

Device firmware upgrade UM0424

32/81 Doc ID 13465 Rev 10

Because it is impractical for a device to concurrently perform both DFU operations and its
normal runtime activities, those normal activities must cease for the duration of the DFU
operations. Doing so means that the device must change its operating mode; that is, a
printer is not a printer while it is undergoing a firmware upgrade; it is a Flash/Memory
programmer. However, a device that supports DFU is not capable of changing its mode of
operation on its own volition. External (human or host operating system) intervention is
required.

4.2.2 Phases

There are four distinct phases required to accomplish a firmware upgrade:

1. Enumeration

The device informs the host of its capabilities. A DFU class-interface descriptor and
associated functional descriptor embedded within the device’s normal run-time
descriptors serve this purpose and provide a target for class-specific requests over the
control pipe.

2. DFU Enumeration

The host and the device agree to initiate a firmware upgrade. The host issues a USB
reset to the device, and the device then exports a second set of descriptors in
preparation for the Transfer phase. This deactivates the run-time device drivers
associated with the device and allows the DFU driver to reprogram the device’s
firmware unhindered by any other communications traffic targeting the device.

3. Transfer

The host transfers the firmware image to the device. The parameters specified in the
functional descriptor are used to ensure correct block sizes and timing for programming
the non-volatile memories. Status requests are employed to maintain synchronization
between the host and the device.

4. Manifestation

Once the device reports to the host that it has completed the reprogramming
operations, the host issues a USB reset to the device. The device re-enumerates and
executes the upgraded firmware.

To ensure that only the DFU driver is loaded, it is considered necessary to change the id-
Product field of the device when it enumerates the DFU descriptor set. This ensures that the
DFU driver will be loaded in cases where the operating system simply matches the vendor
ID and product ID to a specific driver.

UM0424 Device firmware upgrade

Doc ID 13465 Rev 10 33/81

4.2.3 Requests

A number of DFU class-specific requests are needed to accomplish the upgrade operations.
Table 9 summarizes the DFU class-specific requests.

For additional information about these requests, please refer to the DFU Class specification.

4.3 DFU mode selection
The host should be able to enumerate a device with DFU capability in two ways:

● as a single device with only DFU capability

● as a composite device: HID, Mass storage, or any functional class, and with DFU
capability.

During the enumeration phase, the device exposes two distinct and independent descriptor
sets, each one at the appropriate time:

● Run-time descriptor set: shown when the device performs normal operations

● DFU mode descriptor set: shown when host and device agree to perform DFU
operations

4.3.1 Run-time descriptor set

During normal run-time operation, the device exposes its normal set of descriptors plus two
additional descriptors:

● Run-time DFU interface descriptor

● Run-time DFU functional descriptor

Note: The number of interfaces in each configuration descriptor that supports the DFU must be
incremented by one to accommodate the addition of the DFU interface descriptor.

Table 9. Summary of DFU class-specific requests

bmRequest bRequest wValue wIndex wLength Data

00100001b DFU_DETACH (0) wTimeout Interface Zero None

00100001b DFU_DNLOAD (1) wBlockNum Interface Length Firmware

10100001b DFU_UPLOAD (2) wBlockNum Interface Length Firmware

10100001b DFU_GETSTATUS(3) Zero Interface 6 Status

00100001b DFU_CLRSTATUS (4) Zero Interface Zero None

10100001b DFU_GETSTATE (5) Zero Interface 1 State

00100001b DFU_ABORT (6) Zero Interface Zero None

Device firmware upgrade UM0424

34/81 Doc ID 13465 Rev 10

4.3.2 DFU mode descriptor set

After the host and the device agree to perform DFU operations, the host re-enumerates the
device. At this time the device exports the descriptor set shown below:

● DFU Mode Device descriptor

● DFU Mode Configuration descriptor

● DFU Mode Interface descriptor

● DFU Mode Functional descriptor: identical to the Run-Time DFU Functional descriptor

DFU mode device descriptor

This descriptor is only present in the DFU mode descriptor set.

Table 10. DFU mode device descriptor

Offset Field Size Value Description

0 bLength 1 0x12 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x01 DEVICE descriptor type.

2 bcdUSB 2 0x0100
USB specification release number in
binary coded decimal.

4 bDeviceClass 1 0x00 See interface.

5 bDeviceSubClass 1 0x00 See interface.

6 bDeviceProtocol 1 0x00 See interface.

7 bMaxPacketSize0 1 8,16,32,64 Maximum packet size for endpoint zero.

8 idVendor 1 0x0483 Vendor ID

10 idProduct 0xDF11 Product ID

12 bcdDevice 0x011A
Version of the STMicroelectronics DFU
ExtensionSpecification release

14 iManufacturer Index Index of string descriptor.

15 iProduct Index Index of string descriptor.

16 iSerialNumber Index Index of string descriptor.

17 bNumbConfigurations 0x01 One configuration only for DFU.

UM0424 Device firmware upgrade

Doc ID 13465 Rev 10 35/81

DFU mode configuration descriptor

This descriptor is identical to the standard configuration descriptor described in the USB
specification version 1.0, with the exception that the bInterfaceNum field must contain the
value 0x01.

● DFU mode interface descriptor

This is the descriptor for the only interface available when operating in DFU mode.
Therefore, the value of the bInterfaceNumber field is always zero.

● Alternate settings and string descriptor definition

This section describes the STMicroelectronics implementation for Alternate settings
and the corresponding string descriptor set that is not specified by the standard DFU
specification in section 4.2.3.

Alternate settings have to be used to access additional memory segments and other
memories (Flash memory, RAM, EEPROM) that may be physically implemented in the
CPU memory mapping or not, such as external serial SPI Flash memory or external
NOR/NAND Flash memory.

In this case, each alternate setting employs a string descriptor to indicate the target
memory segment as shown below:

@Target Memory Name/Start Address/Sector(1)_Count*Sector(1)_Size
Sector(1)_Type,Sector(2)_Count*Sector(2)_SizeSector(2)_Type,...
...,Sector(n)_Count*Sector(n)_SizeSector(n)_Type

Another example, for STM32 Flash microcontroller, is shown below:

@Internal Flash /0x08000000/12*001Ka,116*001Kg" in case of
STM3210B-EVAL board.

@Internal Flash /0x08000000/6*002Ka,250*002Kg" in case of
STM3210E-EVAL board.

@Internal Flash /0x08000000/6*002Ka,122*002Kg" in case of
STM3210C-EVAL board.

@Internal Flash /0x08000000/48*256 a,464*256 g" in case of
STM32L152-EVAL board.

Table 11. DFU mode interface descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x04 INTERFACE descriptor type.

2 bInterfaceNumber 1 0x00 Number of this interface.

3 bAlternateSetting 1 Number Alternate setting

4 bNumEndpoints 1 0x00 Only the control pipe is used.

5 bInterfaceClass 1 0xFE Application Specific Class Code

6 bInterfaceSubClass 1 0x01 Device Firmware Upgrade Code

7 bInterfaceProtocol 1 0x00
The device does not use a class-specific
protocol on this interface

8 iInterface 1 Index Index of string descriptor for this interface

Device firmware upgrade UM0424

36/81 Doc ID 13465 Rev 10

Each Alternate setting string descriptor must follow this memory mapping so that the
PC Host Software would be able to decode the right mapping for the selected device:

– @: To detect that this is a special mapping descriptor (to avoid decoding standard
descriptor)

– /: for separator between zones

– Maximum 8 digits per address starting by “0x”

– /: for separator between zones

– Maximum of 2 digits for the number of sectors

– *: For separator between number of sectors and sector size

– Maximum 3 digits for sector size between 0 and 999

– 1 digit for the sector size multiplier. Valid entries are: B (byte), K (Kilo), M (Mega)

– 1 digit for the sector type as follows:

a (0x41): Readable

b (0x42): Erasable

c (0x43): Readable and Erasable

d (0x44): Writeable

e (0x45): Readable and Writeable

f (0x46): Erasable and Writeable

g (0x47): Readable, Erasable and Writeable

Note: If the target memory is not contiguous, the user can add the new sectors to be decoded just
after a slash"/" as shown in the following example:

"@Flash /0xF000/1*4Ka/0xE000/1*4Kg/0x8000/2*24Kg"

UM0424 Device firmware upgrade

Doc ID 13465 Rev 10 37/81

● DFU functional descriptor

This descriptor is identical for both the runtime and the DFU mode descriptor sets.

Table 12. DFU functional descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x21 DFU FUNCTIONAL descriptor type.

2 bmAttributes 1 0x00

DFU attributes:

– Bit7: if bit1 is set, the device will have an
accelerated upload speed of 4096 byes per upload
command (bitCanAccelerate)
0: No
1:Yes

– Bits 6:4: reserved
– Bit 3: device will perform a bus detach-attach

sequence when it receives a DFU_DETACH
request.
0 = no
1 = yes

Note: The host must not issue a USB Reset.
(bitWillDetach)

– Bit 2: device is able to communicate via USB after
Manifestation phase (bitManifestation tolerant)
0 = no, must see bus reset
1 = yes

– Bit 1: upload capable (bitCanUpload)
0 = no
1 = yes

– Bit 0: download capable (bitCanDnload)
0 = no
1 = yes

3 wDetachTimeOut 2 Number

Time, in milliseconds, that the device waits after
receipt of the DFU_DETACH request. If this time
elapses without a USB reset, then the device
terminates the Reconfiguration phase and reverts to
normal operation. This represents the maximum time
that the device can wait (depending on its timers,
etc.). The host may specify a shorter timeout in the
DFU_DETACH request.

5 wTransferSize 2 Number
Maximum number of bytes that the device can accept
per control-write transaction: wTransferSize depends
on the firmware implementation on each MCU.

7 bcdDFUVersion 2 0x011A
Version of the STMicroelectronics DFU
ExtensionSpecification release.

Device firmware upgrade UM0424

38/81 Doc ID 13465 Rev 10

4.4 Reconfiguration phase
Once the operator has identified the device and supplied the filename, the host and the
device must negotiate to perform the upgrade.

● The host issues a DFU_DETACH request to Control Endpoint EP0.

● The host issues a USB reset to the device. This USB reset is not possible on some PC
Host OS versions. To bypass this issue, the USB reset is performed by the MCU
depending on the corresponding implementation.

● The device enumerates with the DFU Mode descriptor set, as described above.

Note: 1 Some Device application may not be using USB in their run-time mode such as a Motor
control application or security system, and USB may be used only for memory upgrade.
Those devices are called non-USB application in the scope of this document and the above
sequences are not applicable.

2 Non-USB applications have to carry out the right procedure to enter the DFU mode. This
can be done simply by plugging the USB cable or by jumping to the DFU firmware code
while performing an USB reset so that the device would enumerate with the DFU descriptor
set.

4.5 Transfer phase
The transfer phase begins after the device has processed the USB reset and exported the
DFU Mode descriptor set. Both downloads and uploads of firmware can take place during
this phase. This transfer phase consists of a succession of DFU requests according to the
state diagram described in the following sections.

4.5.1 Requests

A number of DFU class-specific requests are needed to accomplish the upgrade/upload
operations. Table 13 summarizes these requests.

For additional information about these requests, please refer to the DFU Class specification.

Table 13. Summary of DFU upgrade/upload requests

bmRequest bRequest wValue wIndex wLength Data

00100001b DFU_DNLOAD (1) wBlockNum Interface Length Firmware

10100001b DFU_UPLOAD (2) wBlockNum Interface Length Firmware

10100001b DFU_GETSTATUS(3) Zero Interface 6 Status

00100001b DFU_CLRSTATUS (4) Zero Interface Zero None

10100001b DFU_GETSTATE (5) Zero Interface 1 State

00100001b DFU_ABORT (6) Zero Interface Zero None

UM0424 Device firmware upgrade

Doc ID 13465 Rev 10 39/81

4.5.2 Special command/protocol descriptions

In order to support all features (Address decoding and Memory block to erase etc.) of the
DFU Extension implementation from STMicroelectronics, a few format rules are added to
the DFU_DNLOAD request. They are defined as shown in Table 14.

This new custom DFU implements only three supported basic commands:

● Get commands

Byte0 = 0x00 then no additional bytes.

The next DFU_UPLOAD request with wBlockNum = 0 should give the supported
commands.

The maximum size of the supported commands buffer is 256 bytes and the buffer must
support the following commands:

– 0x00 (Get Commands)

– 0x21 (Set Address Pointer)

– 0x41 (Erase Sector containing address)

● Set Address Pointer

Byte0 = 0x21 then 4 bytes containing the address Pointer from which the Blocks will be
downloaded or uploaded starting from the next DFU_DNLOAD or DFU_UPLOAD request
with wBlockNum >1.

● Erase Sector containing address

Byte0 = 0x41 then 4 bytes containing a valid address contained in a memory sector to
be erased and as already exported by the string descriptors of the Alternate settings.

Note: wBlockNum = 1 for both DFU_DNLOAD and DFU_UPLOAD requests is reserved for future
STMicroelectronics use.

Table 14. Special command descriptions

Command Request wBlockNum wLength Data

Get Commands DFU_DNLOAD 0 1 0x00

Set Address Pointer DFU_DNLOAD 0 5 0x21, Address (4bytes)

Erase Sector containing
address

DFU_DNLOAD 0 5 0x41, Address (4bytes)

Device firmware upgrade UM0424

40/81 Doc ID 13465 Rev 10

4.5.3 DFU state diagram

Figure 7 summarizes the DFU interface states and the transitions between them. The
events that rigger state transitions can be thought of as arriving on multiple “input tapes” as
in the classic Turing machine concept.

Figure 7. Interface state transition diagram

Note: The state transition diagram shown in Figure 7 is almost the same as that defined in the
DFU Class specification (Fig A1 page 28), with the exception of the new transition from state
2 to state 6, which is additional and may or not be implemented in the device firmware.

UM0424 Device firmware upgrade

Doc ID 13465 Rev 10 41/81

4.5.4 Downloading and uploading

The host slices the firmware image file into N pieces and sends them to the device by
means of control-write operations in the default endpoint (Endpoint 0).

The maximum number of bytes that the device can accept per control-write transaction is
specified in the wTransferSize field of the DFU Functional Descriptor.

There are several possible download mechanisms depending on the MCU device memory
mapping and the Type of the memory (that is Readable, Erasable, Writeable or a
combination).

The most generic mechanism is described below, where we have a readable, erasable and
writeable sector of memory:

● In addition to the data collected after the enumeration phase about the whole memory
mapping, the device capabilities etc., the Host starts to send a GetCommands
command in order to know additional device capabilities and which commands are
supported by the DFU implementation.

● The host sends an Erase Sector Containing Address command using a DFU_DNLOAD
request with wBlockNum = 0 and wLength = 5. At this stage, the device erases the
memory block where the address sent by the host is located. After the erase operation,
the DFU firmware is able to write application data into the erased block.

● The host begins by sending the Set Address Pointer command using a DFU_DNLOAD
request with wBlockNum = 0 and wLength = 5. This address pointer is saved in the
device RAM as an Absolute Offset.

● The host continues to send the N pieces to the device by means of DFU_DNLOAD
requests with wBlockNum starting from 2 and with the maximum number of bytes that
the device can accept per control-write transaction specified in the wTransferSize
field of the DFU Functional Descriptor.

So the last data written into the memory will be located at device address:

Absolute Offset + (wBlockNum – 2) × wTransferSize + wLength, where
wBlockNum and wLength are the parameters of the last DFU_DNLOAD request.

If the Host wants to upload the memory data for verification, or to retrieve and archive a
device firmware, by definition the reverse of a Download is performed:

● The host begins by sending a Set Address Pointer command using a DFU_DNLOAD
request with wBlockNum = 0 and wLength = 5. This address pointer is saved in the
device RAM as an Absolute Offset.

● The host continues to send N DFU_UPLOAD requests with wBlockNum starting from 2
and with the maximum number of bytes that the device can accept per control-write
transaction specified in the wTransferSize field of the DFU Functional Descriptor if
bitCanAccelerate = 0. If bitCanAccelerate = 1 in the DFU Functional Descriptor, the value in
the wTransferSize field is fixed to 0x4096 bytes.

So the last data retrieved from the memory will be located at device address:

Absolute Offset + (wBlockNum – 2) × wTransferSize + wLength, where
wBlockNum and wLength are the parameters of the last DFU_UPLOAD request.

4.5.5 Manifestation phase

After the transfer phase completes, the device is ready to execute the new firmware. This is
achieved by performing a USB reset to re-enumerate the device in normal run-time
operation.

Device firmware upgrade UM0424

42/81 Doc ID 13465 Rev 10

4.6 STM32 DFU implementation

4.6.1 Supported memories

For the STM32 the DFU implementation supports the following memories:

● Internal Flash memory: the first pages are reserved for the DFU (read-only pages) and
the remaining pages can be programmed by the DFU (application zone):

– In case of STM3210B-EVAL board: the first 12 pages are read only and the
remaining 116 pages are in the application zone.

– In case of STM3210C-EVAL board: the first 6 pages are read only and the
remaining 122 pages are in the application zone.

– In case of STM3210E-EVAL board: the first 6 pages are read only and the
remaining 250 pages are in the application zone.

– In case of STM32L152-EVAL board: the first 48 pages are read only and the
remaining 464 pages are in the application zone.

● External serial Flash memory (M25P64): consists of 128 sectors of 64 Kbytes each.

● NOR Flash memory (M29W128): consists of 256 blocks of 64 Kbytes each. This
memory is supported only by the STM3210E-EVAL board.

Note: 1 To create a DFU image for the internal Flash memory select the Alternate Setting 00 in the
DFU file Manager.

2 To create a DFU image for the external serial Flash memory, select the Alternate Setting 01
in the DFU file Manager.

3 To create a DFU image for the NORFlash memory, select the Alternate Setting 02 in the
DFU file Manager.

4.6.2 DFU mode entry mechanism

For the STM32 the DFU mode is entered after an MCU reset if:

● The DFU mode is forced by the user: the user presses the key push-button (or joystick
Up push-button for STM32L152-EVAL board) after a reset.

● There is no correct code available in the application area: before jumping to the
application code, the DFU code tests if there is a correct top-of-stack address in the
first address in the application area of the internal Flash memory (for the STM32 the
first application address is 0x0800 3000). This is done by reading the value of the first
application address and verifying if the MSB half-word is equal to 0x2000 (base
address of the RAM area in the STM32).

4.6.3 DFU firmware architecture

The DFU application is built around the DFU core which handles the DFU protocol and the
medium access layer (MAL). The MAL is like an abstraction layer between the DFU core
and the different medium drivers. The MAL uses the base address of each medium to
dispatch the write, read and erase operations to the addressed medium.

UM0424 Device firmware upgrade

Doc ID 13465 Rev 10 43/81

Figure 8. DFU firmware architecture

4.6.4 Available DFU image for the STM32

The available DFU images in the STM32 USB development kit are:

● Joystick Mouse Demo

● Custom HID Demo

● Mass Storage Demo

● Virtual COM Demo

● Audio Speaker Demo (for the STM3210B-EVAL, STM3210E-EVAL and STM32L152-
EVAL evaluation boards)

● Audio Streaming Demo with a 25 MHz external clock (for the STM3210C-Eval
evaluation board).

● Audio Streaming Demo with a14.7456 MHz external clock (for the STM3210C-Eval
evaluation board).

4.6.5 How to create a DFU Image

Two steps are needed to create a DFU image:

1. Create a binary image from one of the available USB demo projects by adjusting the
Flash memory base to 0x0800 3000 and by setting the vector table at the top of the
Flash memory space 0x0800 3000.

2. Using the DFU file manager provided with the DFU demo package, generate the DFU
file by setting target ID to 0 (internal Flash) and the start address to 0x0800 3000.

Mass storage demo UM0424

44/81 Doc ID 13465 Rev 10

5 Mass storage demo

This demo runs on the STMicroelectronics STM3210B-EVAL, STM3210C-EVAL,
STM3210E-EVAL and STM32L152-EVAL evaluation boards and can be easily tailored to
any other hardware.

To select the STMicroelectronics evaluation board used to run the demo, uncomment the
corresponding line in the platform_config.h file.

5.1 General description
The mass storage demo gives a typical example of how to use the STM32 USB-FS_Device
or OTG-FS_Device peripheral to communicate with the PC host using bulk transfer.

This demo supports the BOT (bulk only transfer) protocol and all needed SCSI (small
computer system interface) commands, and is compatible with Windows XP (SP1, SP2,
SPI3), Windows 2000 (SP4), Windows VISTA and Windows 7.

5.2 Mass storage demo overview
The mass storage demo complies with USB 2.0 and USB mass storage class (bulk-only
transfer subclass) specifications. After running the application, the user just has to plug the
USB cable into a PC Host and the device is automatically detected without any additional
drive (with Win 2000, XP, VISTA and Windows 7). A new removable drive appears in the
system window and write/read/format operations can be performed as with any other
removable drive (see Figure 9).

Figure 9. New removable disk in Windows

In this implementation, the used memory support is a microSD™ card for the STM3210B-
EVAL, STM3210C-EVAL and STM32L152-EVAL boards and both a microSD and a NAND
Flash for the STM3210E-EVAL board. All related firmware used to initialize, read from and
write to the media are available in the stm32_eval_sdio_sd.c.c/.h, stm32_eval_spi_sd.c/.h
and fsmc_nand.c/.h files.

Note: For mass storage class, the device firmware does not need to know or take into account the
file system the host is using. The firmware just stores and sends blocks of data as requested
by the host.

UM0424 Mass storage demo

Doc ID 13465 Rev 10 45/81

5.3 Mass storage protocol

5.3.1 Bulk-only transfer (BOT)

The BOT protocol uses only bulk pipes to transfer commands, status and data (no interrupt
or control pipes). The default pipe (pipe 0, or in other words, Endpoint 0) is only used to
clear the bulk pipe status (clear STALL status) and to issue the two class-specific requests:
Mass Storage reset and Get Max LUN.

Command transfer

To send a command, the host uses a specific format called command block wrapper (CBW).
The CBW is a 31-byte length packet. Table 15 shows the different fields of a CBW.

● dCBWSignature: 43425355 : USBC (in little Endian)

● dCBWTag: The host specifies this field for each command. The device should return
the same dCBWTag in the associated status.

● dCBWDataTransferLength: total number of bytes to transfer (expected by the host).

● bmCBWFlags: This field is used to specify the direction of the data transfer (if any).
The bits of this field are defined as follows:

– Bit 7: Direction bit:
0: Data Out transfer (host to device).
1: Data In transfer (device to host).
Note: The device ignores this bit if the dCBWDataTransferLength field is
cleared to zero.

– Bits 6:0: reserved (cleared to zero).

● bCBWLUN: concerned Logical Unit number.

● bCBWCBLength: this field specify the length (in bytes) of the command CBWCB.

● CBWCB: the command block to be executed by the device.

Table 15. CBW packet fields

7 6 5 4 3 2 1 0

0-3 dCBWSignature

4-7 dCBWTag

8-11 dCBWDataTransferLength

12 bmCBWFlags

13 Reserved (0) bCBWLUN

14 Reserved (0) bCBWCBLength

15-30 CBWCB

Mass storage demo UM0424

46/81 Doc ID 13465 Rev 10

Status transfer

To inform the host about the status of each received command, the device uses the
command status wrapper (CSW). Table 16 shows the different fields of a CSW.

● dCSWSignature: 53425355 USBS (little Endian).

● dCSWTag: the device sets this field to the received value of dCBWTag in the
concerned CBW.

● dCSWDataResidue: the difference between the expected data (the value of the
dCBWDataTransferLength field of the concerned CBW) and the real value of the data
received or sent by the device.

● bCSWStatus: the status of the concerned command. This field can assume one of the
three non-reserved values shown in Table 17.

Table 16. CSW packet fields

7 6 5 4 3 2 1 0

0-3 dCSWSignature

4-7 dCSWTag

8-11 dCSWDataResidue

12 bCSWStatus

Table 17. Command block status values

Value Description

0x00 Command passed

0x01 Command failed

0x02 Phase error

0x03=>0xFF Reserved

UM0424 Mass storage demo

Doc ID 13465 Rev 10 47/81

Data transfer

The data transfer phase is specified by the dCBWDataTransferLength and bmCBWFlags of
the correspondent CBW. The host attempts to transfer the exact number of bytes to or from
the device.

The diagram shown in Figure 10 shows the state machine of a BOT transfer.

Note: For more information about the BOT protocol please refer to the “Universal Serial Bus Mass
Storage Class Bulk-Only Transport” specification.

Figure 10. BOT state machine

Mass storage demo UM0424

48/81 Doc ID 13465 Rev 10

5.3.2 Small computer system interface (SCSI)

The SCSI command set is designed to provide efficient peer-to-peer operation of SCSI
devices like, for example, hard desks, tapes and mass storage devices. In other words these
are used to ensure the communication between an SCSI device and an operating system in
a PC host.

Table 18 shows SCSI commands for removable devices. Not all commands are shown. For
more information, please refer to the SPC and RBC specifications.

Table 18. SCSI command set

Command name OpCode
Command
support(1)

1. Command Support key: M = support is mandatory, O = support is optional.

Description Reference

Inquiry 0x12 M Get device information SPC-2

Read Format
Capacities

0x23 M
Report current media capacity and
formattable capacities supported by
medium

SPC-2

Mode Sense (6) 0x1A M Report parameters to the host SPC-2

Mode Sense (10) M Report parameters to the host SPC-2

Prevent\ Allow
Medium Removal

0x1E M
Prevent or allow the removal of media from
a removable media device

SPC-2

Read (10) 0x28 M
Transfer binary data from the medium to
the host

RBC

Read Capacity
(10)

0x25 M Report current medium capacity RBC

Request Sense 0x03 O Transfer status sense data to the host SPC-2

Start Stop Unit 0x1B M
Enable or disable the Logical Unit for
medium access operations and controls
certain power conditions

RBC

Test Unit Ready 0x00 M Request the device to report if it is ready SPC-2

Verify (10) 0x2F M Verify data on the medium RBC

Write (10) 0x2A M
Transfer binary data from the host to the
medium

RBC

UM0424 Mass storage demo

Doc ID 13465 Rev 10 49/81

5.4 Mass storage demo implementations

5.4.1 Hardware configuration interface

The hardware configuration interface is a layer between the USB application (in our case the
Mass Storage demo) and the internal/external hardware of the STM32 microcontroller. This
internal and external hardware is managed by the STM32 standard peripheral library, so
from the firmware point of view, the hardware configuration interface is the firmware layer
between the USB application and the standard peripheral library. Figure 11 shows the
interaction between the different firmware components and the hardware environment.

Figure 11. Hardware and firmware interaction diagram

The hardware configuration layer is represented by the two files HW_config.c and
HW_config.h. For the Mass Storage demo, the hardware management layer manages the
following hardware requirements:

● System and USB-FS_Device or OTG-FS_Device peripheral clock configuration

● Read and write LED configuration

● LED command

● Initialize the memory medium

● Get the characteristics of the memory medium (the block size and the memory
capacity)

Mass storage demo UM0424

50/81 Doc ID 13465 Rev 10

5.4.2 Endpoint configurations and data management

This section provides a description of the configuration and the data flow according to the
transfer mode.

Endpoint configurations

The endpoint configurations should be done after each USB reset event, so this part of code
is implemented in the MASS_Reset function (file usp_prop.c).

For all STM32 except Connectivity line devices:

To configure endpoint 0 it is necessary to:

● Configure endpoint 0 as the default control endpoint

● Configure the endpoint 0 Rx and Tx count and buffer addresses in the BTABLE
(usb_conf.h file)

● Configure the endpoint Rx status as VALID and the Tx status as NAK.

The configuration of the bulk pipes (endpoints 1 and 2) is done as follows:

● Configure endpoint 1 as bulk IN

● Configure the endpoint 1 Tx count and data buffer address in the BTABLE (usb_conf.h
file)

● Disable the endpoint 1 Rx

● Configure the endpoint 1 Tx status as NAK

● Configure the endpoint 2 as bulk OUT

● Configure the endpoint 2 Rx count and data buffer address in the BTABLE (usb_conf.h
file)

● Disable the endpoint 2 Tx

● Configure the endpoint 2 Rx status as VALID.

For STM3210C-EVAL (connectivity line devices):

The configuration of endpoint 0 is done in the function USB_SIL_Init()

The configuration of the bulk pipes (endpoints 1 and 2) is done as follows:

● Initialize the endpoint direction, type and maximum packet size using the function
OTGD_FS_EP_Init() which has these parameters:

– Endpoint Address (and direction): EPn_IN for endpoint Tx and EPn_OUT for
endpoint 2 Rx (where n is the number of the endpoint).

– Endpoint Type: in this case bulk type should be used for both endpoints

– Endpoint maximum packet size: the maximum amount of data to be transferred
from or to the device endpoint.

Note: For the OTG-FS_Device, there is no need to set the status of the endpoints in the
initialization phase, unless some application-specific behavior is expected at the beginning
of the communication.

UM0424 Mass storage demo

Doc ID 13465 Rev 10 51/81

Data management

Data management consists of the transfer of the needed data directly from the specified
data buffer address in the USB memory, according to the related endpoint (IN:
ENDP1TXADDR; OUT: ENDP2RXADDR). For these transfers, the following two functions
are used (usb_sil.c file):

● USB_SIL_Read (): this function transfers the received bytes from the USB memory to
the internal RAM. This function is used to copy the data sent by the host to the device.
The number of received data bytes is determined into the function (not passed as
parameter) and this value is returned by the function at the end of the operation.

● USB_SIL_Write (): this function transfers the specified number of bytes from the
internal RAM to the USB memory. This function is used to send the data from the
device to the host.

5.4.3 Class-specific requests

The Mass Storage Class specification describes two class-specific requests:

Bulk-only mass storage reset

This request is used to reset the Mass Storage device and its associated interface. This
class-specific request makes the device ready for the next CBW sent by the PC host.

To issue the bulk-only mass storage reset, the host issues a device request on the default
pipe (endpoint 0) of:

● bmRequestType: Class, Interface, Host to device

● bRequest field set to 0xFF

● wValue field set to 0

● wIndex field set to the interface number (0 for this implementation)

● wLength field set to 0

This request is implemented as a no-data class-specific request in the
MASS_NoData_Setup() function (usb_prop.c file).

After receiving this request, the device clears the data toggle of the two bulk endpoints,
initializes the CBW signature to the default value and sets the BOT state machine to the
BOT_IDLE state to be ready to receive the next CBW.

GET MAX LUN request

A Mass Storage Device may implement several logical units that share common device
characteristics. The host uses bCBWLUN to designate which logical unit of the device is the
destination of the CBW.

The Get Max LUN device request is used to determine the number of logical units supported
by the device.

To issue a Get Max LUN request the host must issue a device request on the default pipe
(endpoint 0) of:

● bmRequestType: Class, Interface, Host to device

● bRequest field set to 0xFE

● wValue field set to 0

● wIndex field set to the interface number (0 for this implementation)

● wLength field set to 1

Mass storage demo UM0424

52/81 Doc ID 13465 Rev 10

This request is implemented as a data class-specific request in the MASS_Data_Setup()
function (usb_prop.c file). Note that in case of the STM3210E-EVAL board two LUNs are
supported

5.4.4 Standard request requirements

To be compliant with the BOT specification the device must respond to the two following
requirements after receiving the same standard requests:

● When the device switches from the unconfigured to the configured state, the data
toggle of all endpoints must be cleared. This requirement is served by the
Mass_Storage_SetConfiguration() function in the usb_prop.c file.

● When the host sends a CBW command with an invalid signature or length, the device
must keep endpoints 1 and 2 both as STALL until it receives the Mass Storage Reset
class-specific request. This functionality is managed by the
Mass_Storage_ClearFeature() function in the usb_prop.c file.

5.4.5 BOT state machine

To provide the BOT protocol, a specific state machine with five states is implemented. The
states are described below:

● BOT_IDLE: this is the default state after a USB reset, Bulk-Only Mass Storage Reset
or after sending a CSW. In this state the device is ready to receive a new CBW from the
host

● BOT_DATA_OUT: the device enters this state after receiving a CBW with data flow
from the host to the device

● BOT_DATA_IN: the device enters this state after receiving a CBW with data flow from
the device to the host

● BOT_DATA_IN_LAST: the device enters this state when sending the last of the data
asked for by the host

● BOT_CSW_SEND: the device moves to this state when sending the CSW. When the
device is in this state and a correct IN transfer occurs, the device moves to the
BOT_IDLE state to be able to receive the next CBW

● BOT_ERROR: Error state

The BOT state machine is managed using the functions described below (usb_bot.c and
usb_bot.h firmware files):

● Mass_Storage_In (); Mass_Storage_Out (): these two functions are called when a
correct transfer (IN or OUT) occurs. The aim of these two functions is to provide the
next step after receiving/sending a CBW, data or CSW

● CBW_Decode (): this function is used to decode the CBW and to dispatch the firmware
to the corresponding SCSI command

● DataInTransfer (): this function is used to transfer the characteristic device data to the
host

● Set_CSW (): this function is used to set the CSW fields with the needed parameters
according to the command execution

● Bot_Abort (): this function is used to STALL the endpoints 1 or 2 (or both) according to
the Error occurring in the BOT flow

UM0424 Mass storage demo

Doc ID 13465 Rev 10 53/81

5.4.6 SCSI protocol implementation

The aim of the SCSI Protocol is to provide a correct response to all SCSI commands
needed by the operating system on the PC host. This section details the method of
management for all implemented SCSI commands.

● INQUIRY command (OpCode = 0x12):

Send the needed inquiry page data (in this demo only page 0 and the standard page
are supported) with the needed data length according to the ALLOCATION LENGTH
field of the command.

● SCSI READ FORMAT CAPACITIES command (OpCode = 0x23):

Send the Read Format Capacity data response (ReadFormatCapacity_Data[]
from the SCSI_data.c file) after checking the presence of the medium. If no medium
has been detected a MEDIUM_NOT_PRESENT error is returned to force the host to
update its internal parameters.

● SCSI READ CAPACITY (10) command (OpCode = 0x25):

Send the Read Capacity (10) data response (ReadCapacity10_Data[] from the
SCSI_data.c file) after checking the presence of the medium. If no medium has been
detected a MEDIUM_NOT_PRESENT error is returned to force the host to update its
internal parameters.

● SCSI MODE SENSE (6) command (OpCode = 0x1A):

Send the Mode Sense (6) data response (Mode_Sense6_data[] from the
SCSI_data.c file).

● SCSI MODE SENSE (10) command (OpCode = 0x5A):

Send the Mode Sense (10) data response (Mode_Sense10_data[] from the
SCSI_data.c file).

● SCSI REQUEST SENSE command (OpCode = 0x03):

Send the Request Sense data response. Note that the Resquest_Sense_Data []
array (SCSI_data.c file) is updated using the Set_Scsi_Sense_Data() function in
order to set the Sense key and the ASC fields according to any error occurring during
the transfer.

● SCSI TEST UNIT READY command (OpCode = 0x00):

Check the presence of the medium. If no medium has been detected a
MEDIUM_NOT_PRESENT error is returned to force the host to update its internal
parameters.

● SCSI PREVENT\ALLOW MEDIUM REMOVAL command (OpCode = 0x1E):

Always return a CSW with COMMAND PASSED status.

● SCSI START STOP UNIT command (OpCode = 0x1B):

This command is sent by the PC host when a user right-clicks on the device (in
Windows) and selects the Eject operation. In this case the firmware programs the data
in the internal Flash memory using the Stor_Data_In_Flash() function.

● SCSI READ 10 command (OpCode = 0x28) and SCSI WRITE 10 command (OpCode
= 0x2A):

The host issues these two commands to perform a read or a write operation. In these
cases the device has to verify the address compatibility with the memory range and the
direction bit in the bmFlag of the command. If the command is validated the firmware
launches the read or write operation from the microSD card.

Mass storage demo UM0424

54/81 Doc ID 13465 Rev 10

● SCSI VERIFY 10 command (OpCode =0x2F):

The SCSI VERIFY 10 command requests the device to verify the data written on the
medium. In this case no Flash-like memory support is used, so when the SCSI VERIFY
10 command is received, the device tests the BLKVFY bit. If the BLKVFY bit is set to
one, a Command Passed status is returned in the CSW.

5.4.7 Memory management

All the memory management functions are grouped in the two files: memory.c and
memory.h. Memory management consists of two basic processes:

● Management and validation of the address range for the SCSI READ (10) and SCSI
WRITE (10) commands: this process is done by the Address_Management_Test()
function. The role of this function is to extract the real address and memory offset in the
medium memory and test if the current transfer (Read or Write) is in the memory range.
If this is not the case, the function STALLs endpoint 1 or 2 or both endpoints (according
to the transfer Read or Write) and returns a bad status to disable the transfer.

● Management of the Read and Write processes: this process is done by the two
functions Read_Memory() and Write_Memory(). These two functions manage the
medium access based on the two functions “MAL_WriteBlock” and “MAL_ReadBlock”
from the msc.c file. After each access, the current memory offset and the next Access
Address are updated using the length of the previous transfer.

5.4.8 Medium access management

Logical access to the addressed medium takes place in a separate layer called the medium
access layer (mass_mal.c and mass_mal.h) through the logical unit number (LUN). This
layer makes the medium access independent of the upper layer and dispatches write and
read operations to the addressed medium.

Figure 12. Medium access layer

Physical access to the NAND and physical access to the micro SD are not similar. In the
case of the micro SD, write, read and erase operations can be made by page units known as
logical sectors. This means that access to the medium is linear and the logical address is
the same as the physical one. In the case of the NAND, write and read operations can be
made by page unit but erase operations are carried out by block unit. This means that a
write operation in a used block is performed in five steps as follows:

● Allocate a free physical block

● Precopy old pages

UM0424 Mass storage demo

Doc ID 13465 Rev 10 55/81

● Write new pages

● Erase old block

● Assign the current logical address to the new block

Figure 13. NAND write operation

The logical-to-physical layer is used to keep a compatibility between the NAND and the
microSD access methods by using the same input parameters for the two media. In the
case of the NAND, the physical address is calculated internally and write and read
operations are carried out in this layer.

Caution: The build look-up table (LUT) process used to translate logical addresses to physical ones
and keep the block status is patented by STMicroelectronics. It is not allowed to use outside
the STM32 firmware, and it should not be reproduced without STMicroelectronics’s
agreement.

5.5 How to customize the mass storage demo
The implemented firmware is a simple example used to demonstrate the STM32 USB
peripheral capability in bulk transfer. However it can be customized according to user
requirements. This customizing can be done in the three layers of the implemented mass
storage protocol:

● Customizing of the BOT layer: the user can implement their own BOT state machine
or modify the implemented one just by modifying the two files usb_BOT.c and
usb_BOT.h and by keeping the same data transfer method.

● Customizing of the SCSI layer: the implemented SCSI protocol presents, more than
the supported command listed in Section 5.4.6: SCSI protocol implementation, a list of
unsupported commands. When the host sends one of these commands, a
corresponding function is called by the CBW_Decode() function like a common
command. However, all the functions related to unsupported commands are defined by
the SCSI_Invalid_Cmd() function, (see usb_scsi.c file). The
SCSI_Invalid_Cmd() function STALLs the two endpoints (1 and 2), sets the Sense
data to invalid command key and sends a CSW with a Command Failed status.
To support one of the invalid commands, the user has to comment out the concerned
line and implement their own process. For example, for the need to support the
SCSI_FormatUnit command, comment the line:
// #define SCSI_FormatUnit_Cmd SCSI_Invalid_Cmd

Mass storage demo UM0424

56/81 Doc ID 13465 Rev 10

And implement a process in a function with the same name in the usb_scsi.c file:
void SCSI_Invalid_Cmd (void)

{

// your implementation

}

In this way the custom function is called automatically by the CBW_Decode() function
(usb_BOT.c file).

However if you need to implement a command not listed in the previous list you have to
modify the CBW_Decode() and implement the protocol of the new command.

Mass storage descriptors

Table 19. Device descriptor

Field Value Description

bLength 0x12 Size of this descriptor in bytes

bDescriptortype 0x01 Descriptor type (device descriptor)

bcdUSB 0x0200 USB specification release number: 2.0

bDeviceClass 0x00 Device Class

bDeviceSubClass 0x00 Device subclass

bDeviceProtocol 0x00 Device protocol

bMaxPacketSize0 0x40 Max Packet Size of Endpoint 0: 64 bytes

idVendor 0x0483 Vendor identifier (STMicroelectronics)

idProduct 0x5720 Product identifier

bcdDevice 0x0100 Device release number: 1.00

iManufacturer 4 Index of the manufacturer String descriptor: 4

iProduct 42 Index of the product String descriptor: 42

iSerialNumber 96 Index of the serial number String descriptor

bNumConfigurations 0x01 Number of possible configurations: 1

Table 20. Configuration descriptor

Field Value Description

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x02 Descriptor type (configuration descriptor)

wTotalLength 32
Total length (in bytes) of the returned data by this
descriptor (including interface endpoint descriptors)

bNumInterfaces 0x0001
Number of interfaces supported by this configuration
(only one interface)

bConfigurationValue 0x01 Configuration value

iConfiguration 0x00 Index of the Configuration String descriptor

UM0424 Mass storage demo

Doc ID 13465 Rev 10 57/81

bmAttributes 0x80
Configuration characteristics:

Bus powered

Maxpower 0x32
Maximum power consumption through USB bus:
100 mA

Table 21. Interface descriptors

Field Value Description

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x04 Descriptor type (Interface descriptor)

bInterfaceNumber 0x00 Interface number

bAlternateSetting 0x00 Alternate Setting number

bNumEndpoints 0x02 Number of used Endpoints: 2

bInterfaceClass 0x08 Interface class: Mass Storage class

bInterfaceSubClass 0x06 Interface subclass: SCSI transparent

bInterfaceProtocl 0x50 Interface protocol: 0x50

iInterface 106 Index of the interface String descriptor

Table 22. Endpoint descriptors

Field Value Description

IN endpoint

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x05 Descriptor type (endpoint descriptor)

bEndpointAddress 0x81 IN endpoint address 1.

bmAttributes 0x02 Bulk endpoint

wMaxPacketSize 0x40 64 bytes

bInterval 0x00 Does not apply for bulk endpoints

OUT endpoint

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x05 Descriptor type (endpoint descriptor)

bEndpointAddress 0x02 Out endpoint address 2

bmAttributes 0x02 Bulk endpoint

wMaxPacketSize 0x40 64 bytes

bInterval 0x00 Does not apply for bulk endpoints

Table 20. Configuration descriptor (continued)

Field Value Description

Virtual COM port demo UM0424

58/81 Doc ID 13465 Rev 10

6 Virtual COM port demo

This demo runs on the STMicroelectronics STM3210B-EVAL, STM3210C-EVAL,
STM3210E-EVAL and STM32L152-EVAL evaluation boards and can be easily tailored to
any other hardware.

To select the STMicroelectronics evaluation board used to run the demo, uncomment the
corresponding line in the platform_config.h file.

6.1 General description
In modern PCs, USB is the standard communication port for almost all peripherals. However
many industrial software applications still use the classic COM Port (UART). The Virtual
COM Port Demo provides a simple solution to bypass this problem. It uses the USB device
as a COM port by affecting the legacy PC application designed for COM Port
communication.

The Virtual COM Port demo provides the firmware examples for the STM32 family and the
PC driver. This section provides a brief description of the implementation, and shows how to
run the demo.

6.2 Virtual COM port demo proposal
The demo proposal is to use the STM32 evaluation board as a USB-to-USART bridge and
to provide communication between a laptop (without RS-232 port) and a standard PC
workstation as shown in Figure 14. The PC application used in the communication is
Windows HyperTerminal. See Figure 15.

Figure 14. Virtual COM Port demo as USB-to-USART bridge

UM0424 Virtual COM port demo

Doc ID 13465 Rev 10 59/81

Figure 15. Communication example

6.3 Software driver installation
To install the software driver of the Virtual COM port, download and execute the “Virtual
Com Port Driver Setup” from the STMicroelectronics website: www.st.com.

At the end of the installation, a new COM port appears in the Device Manager window as
shown in Figure 16.

Virtual COM port demo UM0424

60/81 Doc ID 13465 Rev 10

Figure 16. Device Manager window

6.4 Implementation

6.4.1 Hardware implementation

The Virtual COM port demo uses USART1 present in the STM3210B-EVAL and
STM3210E-EVAL evaluation boards, or USART2 present in the STM3210C-EVAL and
STM32L152-EVAL boards. There is no need to add external hardware to run the demo.

6.4.2 Firmware implementation

In order to be considered as a COM port, the USB device has to implement two interfaces
according to the Communication Device Class (CDC) specification:

● Abstract Control Model Communication, with 1 Interrupt IN endpoint: in our
implementation this interface is declared in the descriptor but the related endpoint
(endpoint 2) is not used

● Abstract Control Model Data, with 1 Bulk IN and 1 Bulk OUT endpoint: this interface is
represented in the demo by endpoint 1 (IN) and endpoint 3 (OUT). Endpoint 1 is used
to send the data received from the UART to the PC through USB. Endpoint 3 is used to
receive the data from the PC and send it through the UART.

UM0424 Virtual COM port demo

Doc ID 13465 Rev 10 61/81

For more information on the CDC class please refer to the Universal Serial Bus Class
Definitions for Communication Devices specification provided by the www.usb.org website.

Class-specific requests

To implement a virtual COM port, the device supports the following class-specific requests:

● SET_CONTROL_LINE_STATE: RS-232 signal used to tell the device that the Data
Terminal Equipment device is now present. This request always returns a
USB_SUCCESS status in the Virtual_Com_Port_NoData_Setup() function
(usb_prop.c file).

● SET_COMM_FEATURE: controls the settings for a particular communication feature.
This request always returns a USB_SUCCESS status in the
Virtual_Com_Port_NoData_Setup() function (usb_prop.c file).

● SET_LINE_CODING: sends the configuration of the device. It includes the baud rate,
stop-bits, parity, and number-of-character bits. The received data is stored in a specific
data structure called “linecoding” and used to update the UART parameters.

● GET_LINE_CODING: This command requests the device current baud rate, stop-bits,
parity, and number-of-character bits. The device responds to this request with the data
stored in the “linecoding” structure.

Hardware configuration interface

The hardware configuration interface (hw_config.c and .h) in the Virtual COM port manages
the following routines:

● Configure the system and peripheral (USB & USART) clock and interrupts

● Initialize the USART to default values

● Configure the USART with the parameters received by the SET_LINE_CODING
request

● Send the data received by the USART to the PC through USB

● Send the data received by the USB through USART

Note: For the STM32, the supported data formats are 7 & 8 bits (in the HyperTerminal) and the
bandwidth range is from 1200 to 115200.

USB voice speaker demo UM0424

62/81 Doc ID 13465 Rev 10

7 USB voice speaker demo

This demo runs on the STMicroelectronics STM3210B-EVAL, STM3210E-EVAL and
STM32L152-EVAL evaluation boards and can be easily tailored to any other hardware.

To select the STMicroelectronics evaluation board used to run the demo, uncomment the
corresponding line in the platform_config.h file.

7.1 General description
The USB voice speaker demo gives examples of how to use the STM32 USB peripheral to
communicate with the PC host in the isochronous transfer mode. They provide a
demonstration of the correct method for configuring an isochronous endpoint, receiving or
transmitting data from/to the host. They also show how to use the data in a real-time
application.

The available voice demo described in this user guide is a USB speaker.

7.2 Isochronous transfer overview
The isochronous transfer is used when the application needs to guarantee the access to the
USB bandwidth with bounded latency, constant data rate and without attempting a new data
transfer operation in case of failure.

In fact, an isochronous transaction does not have a handshake phase and no ACK packet is
expected or sent after the data packet. Figure 17 shows an example of an isochronous OUT
transfer with 64 bytes in the data packet.

Figure 17. Isochronous OUT transfer

UM0424 USB voice speaker demo

Doc ID 13465 Rev 10 63/81

Typical examples of application use of the isochronous transfer mode are audio samples,
compressed video streams and, in general, any sort of sampled data with strict
requirements for the accuracy of the delivered frequency.
Please see the USB 2.0 specifications for more details on the USB isochronous transfer
mode characteristics.

7.3 Audio device class overview
An audio device, as defined by the Universal Serial Bus Class Definition for Audio Devices
specification, is a device or a function embedded in composite devices that are used to
manipulate audio, voice, and sound-related functionality. This includes both audio data
(analog and digital) and the functionality that is used to directly control the audio
environment, such as volume and tone control.

All audio devices are grouped, from the USB point of view, in the audio interface class. This
class is divided into several subclasses. The Universal Serial Bus Class Definition for Audio
Devices specification details the three following subclasses:

● AudioControl Interface subclass (AC): each audio function has a single AudioControl
interface. The AC interface is used to control the functional behavior of a particular
audio function. To achieve this functionality, this interface can use the following
endpoints:

– A control endpoint (endpoint 0) for manipulating unit and terminal settings and
retrieving the state of the audio function using class-specific requests.

– An interrupt endpoint for status returns. This endpoint is optional.

The AudioControl interface is the single entry point to access the internals of the audio
function. All requests that are concerned with the manipulation of certain audio controls
within the audio function’s units or terminals must be directed to the AudioControl
interface of the audio function. Likewise, all descriptors related to the internals of the
audio function are part of the class-specific AudioControl interface descriptor.

The AudioControl interface of an audio function may support multiple alternate settings.
Alternate settings of the AudioControl interface could for instance be used to implement
audio functions that support multiple topologies by presenting different class-specific
AudioControl interface descriptors for each alternate setting.

● AudioStreaming Interface Subclass (AS): AudioStreaming interfaces are used to
interchange digital audio data streams between the host and the audio function. They
are optional. An audio function can have zero or more AudioStreaming interfaces
associated with it, each possibly carrying data of a different nature and format. Each
AudioStreaming interface can have at most one isochronous data endpoint.

● MIDIStreaming Interface Subclass (MIDIS): MIDIStreaming interfaces are used to
transport MIDI data streams into and out of the audio function.

To be able to manipulate the physical properties of an audio function, its functionality
must be divided into addressable entities. Two types of such generic entities are
identified and are called units and terminals. The Universal Serial Bus Class Definition
for Audio Devices specification defines seven types of standard units and terminals that
are considered adequate to represent most audio functions.

These are:

– Input Terminal

– Output Terminal

– Mixer Unit

USB voice speaker demo UM0424

64/81 Doc ID 13465 Rev 10

– Selector Unit

– Feature Unit

– Processing Unit

– Extension Unit.

For more information about the audio class characteristics and requirements please refer to
the Universal Serial Bus Device Class Definition for Audio Devices specification provided by
the usb.org website.

7.4 STM32 USB audio speaker demo
The purpose of the USB audio speaker demo is to receive the audio stream (data) from a
PC host using the USB and to play it back via the STM32 MCU. Figure 18: STM32 USB-
FS_Device audio speaker demo data flow represents the data flow between the PC host
and the audio speaker.

Figure 18. STM32 USB-FS_Device audio speaker demo data flow

7.4.1 General characteristics

● USB device characteristics:

– Endpoint 0: used to enumerate the device and to respond to class-specific
requests. The maximum packet size of this endpoint is 64 bytes.

– Endpoint 1 (OUT): used to receive the audio stream from the PC host with a
maximum packet size up to 22 bytes.

● Audio characteristics:

– Audio data format: Type I / PCM8 format / Mono.

– Audio data resolution: 8 bits.

– Sample frequency: 22 kHz.

● Hardware requirements:

In the case of he STM3210B-EVAL board, since the STM32 MCU does not have an on-
chip DAC to generate the analog data flow, an alternate method is used to implement 1
channel DAC. This method consists in using the build-in pulse width modulation (PWM)
module to generate a signal whose pulse width is proportional to the amplitude of the
sample data. The PWM output signal is then integrated by a low-pass filter to remove
high-frequency components, leaving only the low-frequency content. The output of the
low-pass filter provides a reasonable reproduction of the original analog signal.
Figure 19 shows the Audio playback diagram flow using the built-in PWM. In the case
of the STM3210E-EVAL, the I2S standalone audio peripheral is used to generate the
audio data.

ai14307

Digital data flow
(via USB) Analog data flow

STM32 MCU

UM0424 USB voice speaker demo

Doc ID 13465 Rev 10 65/81

Figure 19. Audio playback flow

7.4.2 Implementation

This section describes the hardware and software solution used to implement a USB audio
speaker using the STM32 microcontroller.

Hardware implementation

In the case of the STM3210B-EVAL board, to implement the PWM feature the following
STM32 built-in timers are used:

● TIM2 in output compare timing mode to act as system timer.

● TIM4 in PWM mode

In the case of the STM3210E-EVAL board, the I2S standalone audio peripheral directly
generates the audio data.

In the case of the STM32L152-EVAL board, the embedded DAC peripheral directly
generates the audio data (frame synchronization is controlled using TIM6 timer).

USB voice speaker demo UM0424

66/81 Doc ID 13465 Rev 10

Firmware implementation

The aim of the STM32 speaker demo is to store the data (Audio Stream) received from the
host in a specific buffer called Stream_Buffer and to use the PWM to play one stream (8-bit
format) every 45.45 µs (~ 22 kHz).

a) Hardware configuration interface:

The hardware configuration interface is a layer between the USB application (in
our case the USB device Audio Speaker) and the internal/external hardware of the
STM32 microcontroller. This internal and external hardware is managed by the
STM32’s standard peripheral library, so from the firmware point of view, the
hardware configuration interface is the firmware layer between the USB-
FS_Device application and the standard peripheral library. Figure 20 shows the
interaction between the different firmware components and the hardware
environment.

The hardware configuration layer is represented by the two files hw_config.c and
hw_config.h. For the USB audio speaker demo, the hardware management layer
manages the following hardware requirements:

– System and USB peripheral clock configuration

– Timer configuration (when STM3210B-EVAL is used)

– I2S configuration (when STM3210E-EVAL is used)

– DAC and Timer configuration (when STM32L152-EVAL is used)

Figure 20. Hardware and firmware interaction diagram

b) Endpoint configurations:

In the STM32 USB device speaker demo, two endpoints are used to communicate
with the PC host: endpoint 0 and endpoint 1. Note that endpoint 1 is an
Isochronous OUT endpoint and this kind of endpoint is managed by the STM32
USB device peripheral using the double buffer mode so the firmware has to
provide two data buffers in the Packet Memory Area for this endpoint. The

Hardware config interface

Hardware (STM32F + board)USB-FS_Device peripheral

USB-FS_Device library

USB-FS_Device
application

STM32
Standard
peripheral

library

ai14309c

STM32 USB-FS_Device audio speaker

UM0424 USB voice speaker demo

Doc ID 13465 Rev 10 67/81

following C code describes the method used to configure an isochronous OUT
endpoint (see the usb_prop.c file, Speaker_Reset () function).

 /* Initialize Endpoint 1 */
 SetEPType(ENDP1, EP_ISOCHRONOUS);

 SetEPDblBuffAddr(ENDP1,ENDP1_BUF0Addr,ENDP1_BUF1Addr);

 SetEPDblBuffCount(ENDP1, EP_DBUF_OUT, 22);

 ClearDTOG_RX(ENDP1);

 ClearDTOG_TX(ENDP1);

 ToggleDTOG_TX(ENDP1);

 SetEPRxStatus(ENDP1, EP_RX_VALID);

 SetEPTxStatus(ENDP1, EP_TX_DIS);

c) Class-specific request

This implementation supports only Mute control. This feature is managed by the
Mute_command function (usb_prop.c file).

d) Isochronous data transfer management

As detailed before, the STM32 manages the isochronous data transfer using the
double buffer mode. So to copy the received data from the PMA to the
Stream_Buffer, the swapping between the two PMA buffers (ENDP1_BUF0Addr
and ENDP1_BUF1Addr) has to be managed. Swapping access to the PMA is
managed according to the buffer usage between the USB peripheral and the
firmware. This operation is provided by the EP1_OUT_Callback () function
(usb_endp.c file). After the end of the copy process, a global variable called
IN_Data_Offset is updated by the number of bytes received and copied in the
Stream_Buffer.

e) Audio Playing Implementation:

To play back the audio samples received from the host when using the
STM3210B-EVAL board, Timer TIM4 is programmed to generate a 125.5 kHz
PWM signal and the TIM2 is programmed to generate an interrupt at a frequency
equal to 22 kHz. On each TIM2 interrupt one Audio Stream is used to update the
pulse of the PWM. A global variable (Out_Data_Offset) is used to point to the next
Stream to play in Stream buffer.

When the I2S audio peripheral is used in the STM3210E-EVAL board, the
Out_Data_Offset variable controls the streaming flow to synchronize the data from
the USB with the Stream buffer used by the I2S peripheral.

When the DAC peripheral is used in the STM32L152-EVAL board, the
Out_Data_Offset variable controls the streaming flow to synchronize the data from
the USB with the Stream buffer used by the DAC peripheral.

Note: Note that both “IN_Data_Offset” and “Out_Data_Offset” are initialized to 0 in each Start of
frame interrupt (see usb_istr.c file, SOF_Callback() function) to avoid the overflow of the
“Stream_Buffer”.

Audio speaker descriptors

Table 23. Device descriptors

Field Value Description

bLength 0x12 Size of this descriptor in bytes

bDescriptortype 0x01 Descriptor type (Device descriptor)

USB voice speaker demo UM0424

68/81 Doc ID 13465 Rev 10

bcdUSB 0x0200 USB specification Release number: 2.0

bDeviceClass 0x00 Device class

bDeviceSubClass 0x00 Device subclass

bDeviceProtocol 0x00 Device protocol

bMaxPacketSize0 0x40 Max packet size of Endpoint 0: 64 bytes;

idVendor 0x0483 Vendor identifier (STMicroelectronics)

idProduct 0x5730 Product identifier

bcdDevice 0x0100 Device release number: 1.00

iManufacturer 0x01 Index of the manufacturer string descriptor: 1

iProduct 0x02 Index of the product string descriptor: 2

iSerialNumber 0x03 Index of the serial number string descriptor: 3

bNumConfigurations 0x01 Number of possible configurations: 1

Table 24. Configuration descriptors

Field Value Description

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x02 Descriptor type (Configuration descriptor)

wTotalLength 0x006D
Total length (in bytes) of the returned data by this
descriptor (including interface endpoint descriptors)

bNumInterfaces 0x02
Number of interfaces supported by this configuration (two
interfaces)

bConfigurationValue 0x01 Configuration value

iConfiguration 0x00 Index of the Configuration String descriptor

bmAttributes 0x80 Configuration characteristics: Bus powered

Maxpower 0x32 Maximum power consumption through USB bus: 100 mA

Table 25. Interface descriptors

Field Value Description

USB speaker standard interface AC descriptor (Interface 0, alternate setting 0)

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x04 Descriptor type: Interface descriptor

bInterfaceNumber 0x00 Interface number

bAlternateSetting 0x00 Alternate setting number

bNumEndpoints 0x00
Number of used endpoints: 0 (only endpoint 0 is used for
this interface)

bInterfaceClass 0x01 Interface class: USB DEVICE CLASS AUDIO

Table 23. Device descriptors (continued)

Field Value Description

UM0424 USB voice speaker demo

Doc ID 13465 Rev 10 69/81

bInterfaceSubClass 0x01 Interface subclass: AUDIO SUBCLASS AUDIOCONTROL

bInterfaceProtocol 0x00 Interface protocol: AUDIO PROTOCOL UNDEFINED

iInterface 0x00 Index of the interface string descriptor

USB speaker class-specific AC interface descriptor

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

bDescriptorSubtype 0x01 Descriptor Subtype: AUDIO CONTROL HEADER

bcdADC 0x0100 bcdADC:1.00

wTotalLength 0x0027 Total Length: 39

bInCollection 0x01 Number of streaming interfaces: 1

baInterfaceNr 0x01 baInterfaceNr: 1

USB speaker input terminal descriptor

bLength 0x0C Size of this descriptor in bytes: 12

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

bDescriptorSubtype 0x02
Descriptor Subtype: AUDIO CONTROL INPUT
TERMINAL

bTerminalID 0x01 Terminal ID: 1

wTerminalType 0x0101 Terminal type: AUDIO TERMINAL USB STREAMING

bAssocTerminal 0x00 No association

bNrChannels 0x01 One channel

wChannelConfig 0x0000 Channel Configuration: MONO

iChannelNames 0x00 Unused

iTerminal 0x00 Unused

USB speaker audio feature unit descriptor

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

bDescriptorSubtype 0x06 DescriptorSubtype: AUDIO CONTROL FEATURE UNIT

bUnitID 0x02 Unit ID: 2

bSourceID 0x01 Source ID:1

bControlSize 0x01 Control Size:1

bmaControls 0x0001 Only the control of the MUTE is supported

iTerminal 0x00 Unused

USB speaker output terminal descriptor

bLength 0x09 Size of this descriptor in bytes

Table 25. Interface descriptors (continued)

Field Value Description

USB voice speaker demo UM0424

70/81 Doc ID 13465 Rev 10

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

bDescriptorSubtype 0x03
Descriptor subtype: AUDIO CONTROL OUTPUT
TERMINAL

bTerminalID 0x03 Terminal ID: 3

wTerminalType 0x0301 Terminal Type: AUDIO TERMINAL SPEAKER

bAssocTerminal 0x00 No association

bSourceID 0x02 Source ID:2

iTerminal 0x00 Unused

USB speaker standard AS interface descriptor - audio streaming zero bandwidth
(Interface 1, alternate setting 0)

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

bInterfaceNumber 0x01 Interface Number: 1

bAlternateSetting 0x00 Alternate Setting: 0

bNumEndpoints 0x00 not used (zero bandwidth)

bInterfaceClass 0x01 Interface class: USB DEVICE CLASS AUDIO

bInterfaceSubClass 0x02
Interface subclass: AUDIO SUBCLASS
AUDIOSTREAMING

bInterfaceProtocol 0x00 Interface protocol: AUDIO PROTOCOL UNDEFINED

iInterface 0x00 Unused

 USB speaker standard AS interface descriptor - audio streaming operational
(Interface 1, Alternate setting 1)

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

bInterfaceNumber 0x01 Interface number: 1

bAlternateSetting 0x01 Alternate Setting: 1

bNumEndpoints 0x01 One Endpoint.

bInterfaceClass 0x01 Interface class: USB CLASS AUDIO

bInterfaceSubClass 0x02
Interface subclass: AUDIO SUBCLASS
AUDIOSTREAMING

bInterfaceProtocol 0x00 Interface protocol: AUDIO PROTOCOL UNDEFINED

iInterface 0x00 Unused

 USB speaker audio streaming interface descriptor

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

Table 25. Interface descriptors (continued)

Field Value Description

UM0424 USB voice speaker demo

Doc ID 13465 Rev 10 71/81

bInterfaceNumber 0x01 Interface number: 1

bAlternateSetting 0x01 Alternate Setting: 1

bNumEndpoints 0x01 One Endpoint.

wFormatTag 0x0002 PCM8 format

USB speaker audio type I format interface descriptor

bLength 0x0B Size of this descriptor in bytes

bDescriptortype 0x24
Descriptor type: AUDIO INTERFACE DESCRIPTOR
TYPE

bDescriptorSubtype 0x03 Descriptor subtype: AUDIO STREAMING FORMAT TYPE

bFormatType 0x01 Format type: Type I

bNrChannels 0x01 Number of channels: one channel

bSubFrameSize 0x01 Subframe size: one byte per audio subframe

bBitResolution 0x08 Bit resolution: 8 bits per sample

bSamFreqType 0x01 One frequency supported

tSamFreq 0x0055F0 22 kHz

Table 26. Endpoint descriptors

Field Value Description

Endpoint 1 - standard descriptor

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x05 Descriptor type (endpoint descriptor)

bEndpointAddress 0x01 OUT Endpoint address 1.

bmAttributes 0x01 Isochronous Endpoint

wMaxPacketSize 0x0016 22 bytes

bInterval 0x00 Unused

Endpoint 1 - Audio streaming descriptor

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x25 Descriptor type: AUDIO ENDPOINT DESCRIPTOR TYPE

bDescriptor 0x01 AUDIO ENDPOINT GENERAL

bmAttributes 0x80 bmAttributes: 0x80

bLockDelayUnits 0x00 Unused

wLockDelay 0x0000 Unused

Table 25. Interface descriptors (continued)

Field Value Description

USB audio streaming demo UM0424

72/81 Doc ID 13465 Rev 10

8 USB audio streaming demo

This demo runs on the STMicroelectronics STM3210C-EVAL evaluation board and can be
easily tailored to any other hardware.

8.1 General description
The USB audio streaming demo gives an example of how to use the STM32 OTG-
FS_Device peripheral combined with the audio-class I2S peripheral to communicate with a
PC host in isochronous transfer mode and output a high quality audio stream. It is based on
the USB voice demo with enhancements and use of the audio-class I2S peripheral
performance.
The available voice demo described in this user guide is a USB speaker.

8.2 STM32 USB audio streaming demo
The purpose of the USB audio streaming demo is to receive the audio Stream (data) from a
PC host using the OTG-FS_Device peripheral and to play it back via the STM32 audio-class
I2S peripheral. The data flow and hardware used is basically similar to the voice demo
described in Section 7.

8.2.1 General characteristics

● OTG-FS_Device characteristics:

– Endpoint 0: used to enumerate the device and to respond to class-specific
requests. The maximum packet size of this endpoint is 64 bytes.

– Endpoint 1 (OUT): used to receive the audio stream from the PC host with a
configurable maximum packet size (according to the desired audio rate, fixed in
the usb_conf.h file through the define AUDIO_FREQ_xxK. Uncomment the
corresponding define to use the selected audio frequency.

● Audio characteristics:

– Audio data format: Type III / PCM format (16 bits) / Stereo.

– Audio data resolution: 16 bits.

– Sample frequency: pre-fixed frequency: 8, 11.025, 16, 22.05, 32, 44.1 or 48 kHz.

● Hardware requirements:

For the STM3210C-EVAL, the I2S standalone audio peripheral is used to generate the
audio data.

Figure 21. Audio playback flow

UM0424 USB audio streaming demo

Doc ID 13465 Rev 10 73/81

8.2.2 Implementation

This section describes the hardware and software solution used to implement a USB audio
streaming using the STM32 microcontroller.

Hardware implementation

For the STM3210C-EVAL board, the I2S standalone audio peripheral directly generates the
audio data using DMA transfers.

Firmware implementation

The aim of the STM32 audio streaming demo is to store the data (Audio Stream) received
from the host in a multi buffer called Isoc_Buffer and to use the I2S combined with the DMA
to play a stream (16-bit format).

a) Hardware configuration interface:

The hardware configuration interface is a layer between the USB application (in
our case the USB audio streaming) and the internal/external hardware of the
STM32F105/107xx connectivity line microcontroller. This internal and external
hardware is managed by the STM32F105/107xx connectivity line’s standard
peripheral library, so from the firmware point of view, the hardware configuration
interface is the firmware layer between the USB application and the standard
peripheral library. Figure 22 shows the interaction between the different firmware
components and the hardware environment.

The Hardware configuration layer is represented by the two files hw_config.c and
hw_config.h. For the USB audio streaming demo, the hardware management layer
manages the following hardware requirements:

– System and OTG-FS_Device peripheral clock configuration

– Codec configuration (through I2C control port and using IO expander for reset
pin)

– Audio property and I2S configuration.

USB audio streaming demo UM0424

74/81 Doc ID 13465 Rev 10

Figure 22. Hardware and firmware interaction diagram

b) Endpoint configurations:

In the STM32 USB audio streaming demo, two endpoints are used to
communicate with the PC host: endpoint 0 and endpoint 1. The following C code
describes the method used to configure an isochronous OUT endpoint (see the
usb_prop.c file, Speaker_Reset () function).

 /* Initialize Endpoint 1 */
 OTGD_FS_EP_Init(ENDP1_OUT, EP_ISOCHRONOUS, ISOC_BUFFER_SZE);

ISOC_BUFFER_SZE is declared in usb_conf.h file and is calculated as follows:
ISOC_BUFFER_SZE = (2 * 2 * (audio frequency)/1000)

For example: if the audio frequency is 48 kHz then ISOC_BUFFER_SZE = (2 * 2 *
48) = 192

c) Class-specific request

This implementation supports only Mute control. This feature is managed by the
Mute_command function (usb_prop.c file).

d) Isochronous data transfer management

The Isochronous transfer is managed with DMA through configurable free multi
buffers. A large size buffer is allocated in the embedded SRAM and divided into
multiple sub-buffers, each one has a size equal to the ISOC_BUFFER_SZE
previously calculated. The number of sub-buffers has to be an integer.

For example if the audio frequency is 48 kHz then ISOC_BUFFER_SZE is 192. If
the number of sub-buffers is 30, then, the total size of Isoc_Buffer is 192*30 =
5.625 KB. The number of sub-buffers is configurable through the define
NUM_SUB_BUFFERS in usb_conf.h file.

The DMA transfers data from this buffer to the I2S peripheral in circular continuous
mode. Meanwhile, the OTG-FS_Device peripheral copies the data received from

Hardware config interface

Hardware (STM32 + board)
OTG-FS_Device peripheral

USB-FS-Device library

USB
application

STM32
Standard
peripheral

library

STM32 USB-FS_Device audio streaming

ai15756b

UM0424 USB audio streaming demo

Doc ID 13465 Rev 10 75/81

the host to this buffer. To guarantee a correct transfer, the global buffer is divided
into two parts. When the OTG-FS_Device transfer is being performed on the first
part, the DMA transfer should be performed from the second part, and when the
OTG-FS_Device transfer reaches the second part, the DMA should begin reading
from the first part. Figure 23 illustrates this mechanism.

Figure 23. Isochronous data transfer management

If the host stops transferring data to the device (pauses or stops streaming), this is
detected through the SOF ISR which detects if a new packet has been received or
not. In this case the DMA transfer is stopped and the audio output is muted.

Audio speaker descriptors

Table 27. Device descriptors

Field Value Description

bLength 0x12 Size of this descriptor in bytes

bDescriptortype 0x01 Descriptor type (Device descriptor)

bcdUSB 0x0200 USB specification Release number: 2.0

bDeviceClass 0x00 Device class

bDeviceSubClass 0x00 Device subclass

bDeviceProtocol 0x00 Device protocol

bMaxPacketSize0 0x40 Max packet size of Endpoint 0: 64 bytes;

idVendor 0x0483 Vendor identifier (STMicroelectronics)

idProduct 0x5730 Product identifier

bcdDevice 0x0100 Device release number: 1.00

iManufacturer 0x01 Index of the manufacturer string descriptor: 1

iProduct 0x02 Index of the product string descriptor: 2

iSerialNumber 0x03 Index of the serial number string descriptor: 3

bNumConfigurations 0x01 Number of possible configurations: 1

STM32 USB-FS_Device audio streaming

....

1
2
3

N/2 + 1

N

....

N/2

DMA transfer

USB transfer

I2S DR register

DMA transfer
complete flag

DMA half transfer
complete flag

: Sub-buffer
N : Number of Sub-buffers

N - 1
N - 2

ai15757b

USB audio streaming demo UM0424

76/81 Doc ID 13465 Rev 10

Table 28. Configuration descriptors

Field Value Description

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x02 Descriptor type (Configuration descriptor)

wTotalLength 0x006D
Total length (in bytes) of the returned data by this
descriptor (including interface endpoint descriptors)

bNumInterfaces 0x02
Number of interfaces supported by this configuration (two
interfaces)

bConfigurationValue 0x01 Configuration value

iConfiguration 0x00 Index of the Configuration String descriptor

bmAttributes 0x80 Configuration characteristics: Bus powered

Maxpower 0x32 Maximum power consumption through USB bus: 100 mA

Table 29. Interface descriptors

Field Value Description

USB speaker standard interface AC descriptor (Interface 0, alternate setting 0)

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x04 Descriptor type: Interface descriptor

bInterfaceNumber 0x00 Interface number

bAlternateSetting 0x00 Alternate setting number

bNumEndpoints 0x00
Number of used endpoints: 0 (only endpoint 0 is used for this
interface)

bInterfaceClass 0x01 Interface class: USB DEVICE CLASS AUDIO

bInterfaceSubClass 0x01 Interface subclass: AUDIO SUBCLASS AUDIOCONTROL

bInterfaceProtocol 0x00 Interface protocol: AUDIO PROTOCOL UNDEFINED

iInterface 0x00 Index of the interface string descriptor

USB speaker class-specific AC interface descriptor

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

bDescriptorSubtype 0x01 Descriptor Subtype: AUDIO CONTROL HEADER

bcdADC 0x0100 bcdADC:1.00

wTotalLength 0x0027 Total Length: 39

bInCollection 0x01 Number of streaming interfaces: 1

baInterfaceNr 0x01 baInterfaceNr: 1

USB speaker input terminal descriptor

bLength 0x0C Size of this descriptor in bytes: 12

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

UM0424 USB audio streaming demo

Doc ID 13465 Rev 10 77/81

bDescriptorSubtype 0x02 Descriptor Subtype: AUDIO CONTROL INPUT TERMINAL

bTerminalID 0x01 Terminal ID: 1

wTerminalType 0x0101 Terminal Type: AUDIO TERMINAL USB STREAMING

bAssocTerminal 0x00 No association

bNrChannels 0x01 One channel

wChannelConfig 0x0000 Channel Configuration: MONO

iChannelNames 0x00 Unused

iTerminal 0x00 Unused

USB- speaker audio feature unit descriptor

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

bDescriptorSubtype 0x06 DescriptorSubtype: AUDIO CONTROL FEATURE UNIT

bUnitID 0x02 Unit ID: 2

bSourceID 0x01 Source ID:1

bControlSize 0x01 Control Size:1

bmaControls 0x0001 Only the control of the MUTE is supported

iTerminal 0x00 Unused

USB speaker output terminal descriptor

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

bDescriptorSubtype 0x03 Descriptor subtype: AUDIO CONTROL OUTPUT TERMINAL

bTerminalID 0x03 Terminal ID: 3

wTerminalType 0x0301 Terminal Type: AUDIO TERMINAL SPEAKER

bAssocTerminal 0x00 No association

bSourceID 0x02 Source ID:2

iTerminal 0x00 Unused

USB speaker standard AS interface descriptor - audio streaming zero bandwidth
(Interface 1, alternate setting 0)

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

bInterfaceNumber 0x01 Interface Number: 1

bAlternateSetting 0x00 Alternate Setting: 0

bNumEndpoints 0x00 not used (zero bandwidth)

bInterfaceClass 0x01 Interface class: USB DEVICE CLASS AUDIO

Table 29. Interface descriptors (continued)

Field Value Description

USB audio streaming demo UM0424

78/81 Doc ID 13465 Rev 10

bInterfaceSubClass 0x02 Interface subclass: AUDIO SUBCLASS AUDIOSTREAMING

bInterfaceProtocol 0x00 Interface protocol: AUDIO PROTOCOL UNDEFINED

iInterface 0x00 Unused

 USB speaker standard AS interface descriptor - audio streaming operational
(Interface 1, alternate setting 1)

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

bInterfaceNumber 0x01 Interface number: 1

bAlternateSetting 0x01 Alternate Setting: 1

bNumEndpoints 0x01 One Endpoint.

bInterfaceClass 0x01 Interface class: USB CLASS AUDIO

bInterfaceSubClass 0x02 Interface subclass: AUDIO SUBCLASS AUDIOSTREAMING

bInterfaceProtocol 0x00 Interface protocol: AUDIO PROTOCOL UNDEFINED

iInterface 0x00 Unused

 USB speaker audio streaming interface descriptor

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

bInterfaceNumber 0x01 Interface number: 1

bAlternateSetting 0x01 Alternate Setting: 1

bNumEndpoints 0x01 One Endpoint.

wFormatTag 0x0001 PCM format (16 bits)

USB speaker audio type III format interface descriptor

bLength 0x0B Size of this descriptor in bytes

bDescriptortype 0x24 Descriptor type: AUDIO INTERFACE DESCRIPTOR TYPE

bDescriptorSubtype 0x03 Descriptor subtype: AUDIO STREAMING FORMAT TYPE

bFormatType 0x03 Format type: Type III

bNrChannels 0x02 Number of channels: two channels

bSubFrameSize 0x02 Subframe size: two bytes per audio subframe

bBitResolution 0x10 Bit resolution: 16 bits per sample

bSamFreqType 0x01 One frequency supported

tSamFreq
AUDIO_F

REQ
This value is configured automatically according to the define in
usb_conf.h file

Table 29. Interface descriptors (continued)

Field Value Description

UM0424 USB audio streaming demo

Doc ID 13465 Rev 10 79/81

Table 30. Endpoint descriptors

Field Value Description

Endpoint 1 - standard descriptor

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x05 Descriptor type (endpoint descriptor)

bEndpointAddress 0x01 OUT Endpoint address 1.

bmAttributes 0x01 Isochronous Endpoint

wMaxPacketSize
ISOC_BUFFER_SZ

E
This number is defined in usb_conf.h file and
depends on the audio frequency selected.

bInterval 0x00 Unused

Endpoint 1 - Audio streaming descriptor

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x25
Descriptor type: AUDIO ENDPOINT DESCRIPTOR
TYPE

bDescriptor 0x01 AUDIO ENDPOINT GENERAL

bmAttributes 0x80 bmAttributes: 0x80

bLockDelayUnits 0x00 Unused

wLockDelay 0x0000 Unused

Revision history UM0424

80/81 Doc ID 13465 Rev 10

9 Revision history

Table 31. Document revision history

Date Revision Changes

28-May-2007 1 Initial release.

04-Oct-2007 2
Evaluation board name corrected. Reference to UM0412 added to
Section 4: Device firmware upgrade. Note added in Section 5.2:
Mass storage demo overview.

22-May-2008 3
STM3210E-EVAL added, user manual updated accordingly. Small
text changes.

30-May-2008 4

Section 1.5.2: Tusb_desc (.h, .c) on page 21 and Section 3: Custom
HID demo on page 28 added.
Section 2: Joystick mouse demo on page 26 modified.

Section 4.6: STM32 DFU implementation on page 42 modified.

Section 5.4.8: Medium access management on page 54 added.

13-Jun-2008 5
Caution: on page 55 reference to firmware license agreement
removed.

03-Apr-2009 6
USB replaced by USB-FS_Device. STM32 Firmware Library
upgraded to the standard peripheral library.

07-May-2009 7 Corrupted pdf version replaced.

10-Nov-2009 8

Added support for OTG full-speed device peripherals.

Introduction modified.
Section 1.1: USB application hierarchy and Section 1.2: USB-
FS_Device peripheral interface modified.
Enhancement of the library architecture.

GetEPAdress modified in Endpoint register functions.

Section 4.6.5: How to create a DFU Image modified.
Section 5.2: Mass storage demo overview modified.

Figure 16: Device Manager window modified.

Section 8: USB audio streaming demo added.
BYTE replaced by uint8_t, WORD replaced by uint16_t.

Small text changes.

31-May-2010 9
Modified Section 1.4.2: usb_core (.h , .c) on page 16 (device
property structure) and Section 1.5.1: usb_conf(.h) on page 21

31-Mar-2011 10
Updated title and document from "STM32F10xx" to "STM32" to take
into account support for the STM32L152-EVAL evaluation boards for
STM32L15xx devices.

UM0424

Doc ID 13465 Rev 10 81/81

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 STM32 USB-FS-Device firmware library
	1.1 USB application hierarchy
	Figure 1. USB application hierarchy
	Figure 2. USB-FS-Device library package organization

	1.2 USB-FS_Device peripheral interface
	Table 1. USB-FS_Device peripheral interface modules
	1.2.1 usb_reg(.h, .c)
	Table 2. Common register functions

	1.2.2 usb_int (.h , .c)
	1.2.3 usb_mem (.h , .c)

	1.3 OTG-FS_Device peripheral interface
	Table 3. OTG-FS_Device peripheral interface modules
	1.3.1 otgd_fs_dev(.h, .c)
	Table 4. otgd_fs_dev functions

	1.3.2 otgd_fs_int(.h, .c)
	1.3.3 otgd_fs_pcd(.h, .c)
	1.3.4 otgd_fs_cal(.h, .c)
	1.3.5 otgd_fs_regs.h

	1.4 USB-FS-Device_Driver medium layer
	Table 6. USB-FS-Device_Driver medium layer modules
	1.4.1 usb_init(.h,.c)
	1.4.2 usb_core (.h , .c)
	1.4.3 usb_sil(.h, .c)
	1.4.4 usb_type.h / usb_def.h

	1.5 Application interface
	1.5.1 usb_conf(.h)
	1.5.2 usb_desc (.h, .c)
	1.5.3 usb_prop (.h , .c)
	1.5.4 usb_endp (.c)
	1.5.5 usb_istr(.c)
	1.5.6 usb_pwr (.h , .c)
	Table 8. Power management functions

	1.6 Implementing a USB-FS_Device application using the STM32 USB-FS-Device library
	1.6.1 Implementing a no-data class-specific request
	1.6.2 How to implement a data class-specific request
	1.6.3 How to manage data transfers in non-control endpoint

	2 Joystick mouse demo
	2.1 General description
	Figure 3. Format of the four data bytes

	2.2 STM32 low-power management in suspend mode
	2.3 Remote Wakeup implementation

	3 Custom HID demo
	3.1 General description
	3.2 Descriptor topology
	Figure 4. Custom HID topology

	3.3 Custom HID implementation
	3.3.1 LED control
	Figure 5. Data OUT format

	3.3.2 Push-button state report
	Figure 6. Data IN Format

	3.3.3 ADC-converted data transfer

	4 Device firmware upgrade
	4.1 General description
	4.2 DFU extension protocol
	4.2.1 Introduction
	4.2.2 Phases
	4.2.3 Requests
	Table 9. Summary of DFU class-specific requests

	4.3 DFU mode selection
	4.3.1 Run-time descriptor set
	4.3.2 DFU mode descriptor set
	Table 10. DFU mode device descriptor
	Table 11. DFU mode interface descriptor
	Table 12. DFU functional descriptor

	4.4 Reconfiguration phase
	4.5 Transfer phase
	4.5.1 Requests
	Table 13. Summary of DFU upgrade/upload requests

	4.5.2 Special command/protocol descriptions
	Table 14. Special command descriptions

	4.5.3 DFU state diagram
	Figure 7. Interface state transition diagram

	4.5.4 Downloading and uploading
	4.5.5 Manifestation phase

	4.6 STM32 DFU implementation
	4.6.1 Supported memories
	4.6.2 DFU mode entry mechanism
	4.6.3 DFU firmware architecture
	Figure 8. DFU firmware architecture

	4.6.4 Available DFU image for the STM32
	4.6.5 How to create a DFU Image

	5 Mass storage demo
	5.1 General description
	5.2 Mass storage demo overview
	Figure 9. New removable disk in Windows

	5.3 Mass storage protocol
	5.3.1 Bulk-only transfer (BOT)
	Table 15. CBW packet fields
	Table 16. CSW packet fields
	Table 17. Command block status values
	Figure 10. BOT state machine

	5.3.2 Small computer system interface (SCSI)
	Table 18. SCSI command set

	5.4 Mass storage demo implementations
	5.4.1 Hardware configuration interface
	Figure 11. Hardware and firmware interaction diagram

	5.4.2 Endpoint configurations and data management
	5.4.3 Class-specific requests
	5.4.4 Standard request requirements
	5.4.5 BOT state machine
	5.4.6 SCSI protocol implementation
	5.4.7 Memory management
	5.4.8 Medium access management
	Figure 12. Medium access layer
	Figure 13. NAND write operation

	5.5 How to customize the mass storage demo
	Table 19. Device descriptor
	Table 20. Configuration descriptor
	Table 21. Interface descriptors
	Table 22. Endpoint descriptors

	6 Virtual COM port demo
	6.1 General description
	6.2 Virtual COM port demo proposal
	Figure 14. Virtual COM Port demo as USB-to-USART bridge
	Figure 15. Communication example

	6.3 Software driver installation
	Figure 16. Device Manager window

	6.4 Implementation
	6.4.1 Hardware implementation
	6.4.2 Firmware implementation

	7 USB voice speaker demo
	7.1 General description
	7.2 Isochronous transfer overview
	Figure 17. Isochronous OUT transfer

	7.3 Audio device class overview
	7.4 STM32 USB audio speaker demo
	Figure 18. STM32 USB-FS_Device audio speaker demo data flow
	7.4.1 General characteristics
	Figure 19. Audio playback flow

	7.4.2 Implementation
	Figure 20. Hardware and firmware interaction diagram
	Table 23. Device descriptors
	Table 24. Configuration descriptors
	Table 25. Interface descriptors
	Table 26. Endpoint descriptors

	8 USB audio streaming demo
	8.1 General description
	8.2 STM32 USB audio streaming demo
	8.2.1 General characteristics
	Figure 21. Audio playback flow

	8.2.2 Implementation
	Figure 22. Hardware and firmware interaction diagram
	Figure 23. Isochronous data transfer management
	Table 27. Device descriptors
	Table 28. Configuration descriptors
	Table 29. Interface descriptors
	Table 30. Endpoint descriptors

	9 Revision history
	Table 31. Document revision history

