23 | | Der untersuchte DNAPL, Schwefelkohlenstoff ($CS_2$), zeichnet sich vor allem durch seine geringe Löslichkeit in Wasser ($2$g/L), der hohe Dichte ($1,26$g/mL) und dem hohen Dampfdruck ($48,2$kPa) aus. Die geringe Löslichkeit und hohe Dichte dafür sorgen, dass sich keine Mischbarkeit mit Wasser vorliegt und sich das $CS_2$ als Schwerphase nach unten absinkt und zusammenlagert. Der hohe Dampfdruck bringt in Kombination mit der Explosivität der Substanz einige Besonderheiten im Umgang mit sich. Generell ist der Kontakt mit der Atmosphäre möglichst zu vermeiden. Daher wurden Vorräte in geöffneten Flaschen stets mit Wasser überschichtet, Gasdichte Spritzen verwendet, Die Proben stets Dicht verschlossen und bis zur Analyse kühl gelagert. Um bei Unfällen die Explosionsgefahr gering zu halten wurde in einem speziellen explosionsgeschützten Labor gearbeitet. Dieses war ausgestattet mit einer Zwangsbe- und endlüftung. Wobei die Absaugung für den Raum sich aufgrund der Dichte der Substanz auf Fußbodenhöhe befand. Der Boden war mit einer antistatischen Beschichtung versehen und sämtliche elektrische Geräte waren luftdicht gekapselt und geerdet. Aufgrund der Giftigkeit der Dämpfe wurde die Abluft aus den Digestorien und die Raumluft kontinuierlich mittels stationärem PID und mit zusätzlichen Stichproben mit einem mobilen PID überwacht. Wobei $CS_2$ einen ausgebrägten Eigengeruch aufweist, der auch in sehr kleinen Mengen bereits von der menschlichen Nase wahrgenommen wird. |
---|
| 23 | Der untersuchte DNAPL, Schwefelkohlenstoff ($CS_2$), zeichnet sich vor allem durch seine geringe Löslichkeit in Wasser ($2$g/L), der hohe Dichte ($1,26$g/mL) und dem hohen Dampfdruck ($48,2$kPa) aus. Die geringe Löslichkeit und hohe Dichte sorgen dafür, dass keine Mischbarkeit mit Wasser vorliegt und das $CS_2$ als Schwerphase nach unten absinkt und am Boden zusammenlagert. Der hohe Dampfdruck bringt in Kombination mit der Explosivität der Substanz einige Besonderheiten im Umgang mit sich. Generell ist der Kontakt mit der Atmosphäre möglichst zu vermeiden. Daher wurden Vorräte in geöffneten Flaschen stets mit Wasser überschichtet, gasdichte Spritzen verwendet, die Proben stets dicht verschlossen und bis zur Analyse kühl gelagert. Um bei Unfällen die Explosionsgefahr gering zu halten wurde in einem speziellen eingerichteten Labor gearbeitet. Dieses war ausgestattet mit einer Zwangsbe- bzw. endlüftung. Wobei die Absaugung für den Raum sich aufgrund der Dichte der Substanz auf Fußbodenhöhe befand. Der Boden war mit einer antistatischen Beschichtung versehen und sämtliche elektrische Geräte waren luftdicht gekapselt und geerdet. Aufgrund der Giftigkeit der Dämpfe wurde die Abluft aus den Digestorien und die Raumluft kontinuierlich mittels stationärem PID (Photoionisationsdetektor) und mit zusätzlichen Stichproben mit einem mobilen PID überwacht. $CS_2$ weist darüber hinaus einen ausgeprägten Eigengeruch auf, der auch in sehr kleinen Mengen bereits von der menschlichen Nase wahrgenommen wird. Bei längerer Exposition kann es allerdindgs zu Gewöhnungseffekten kommen. |
---|
25 | | Als Linker kamen zum einen die Alkohole Isopropanol (2-Propanol), Hexanol und Decanol zum Einsatz, zum anderen ein Polyethylenglykol. Der Isopropanol und das Polyethylenglycol sind deutlich hydrophil, Hexanol und Decanol lipophil. |
---|
| 25 | Als Linker kamen zum einen die Alkohole Isopropanol (2-Propanol), Hexanol und Decanol zum Einsatz, zum anderen ein Polyethylenglykol (PEG). %Der Isopropanol und das Polyethylenglycol sind deutlich hydrophil, Hexanol und Decanol lipophil. |
---|
| 26 | Langkettige Alkohole sind verbreitete lipophile Linker, PEGs werden gerne als hydrophile Linker eingesetzt. |
---|
| 27 | Man kann also eine Unterscheidung in hydrophile und lipophile Linker vornehmen. Grundsätzlich lagern sich Linker zwischen die Tensidmoleküle an der ÖL-/Wassergrenzfläche ein und verbessern entweder die Wechselwirkungen mit Öl oder Wasser. |
---|
| 28 | Hydrophile Linker setzten sich in der Grenzschicht zwischen die Kopfgruppen der Tensidmoleküle. Dort verringern sie die Wechselwirkungen der Kopfgruppen untereinander und vergrößern zudem die Oberfläche der Mizelle. |
---|
| 29 | Die lipophilen Linker bewegen sich zwischen die Alkylketten des Tensids in der Ölphase und vergrößern die Kontaktflächen zum Öl. |
---|
117 | | Durch den zusätzlichen Einsatz von Linkern und Cotensiden sollte ein Mikroemulsionssystem hergestellt werden. Mikroemulsionen sind stabiler als Makroemulsionen und haben ein zeigen ein besser steuerbares Phasenverhalten. |
---|
118 | | Linker sollen sich in die Grenzschicht zwischen Öl und Wasser einlagern. Man unterscheidet lipophile und hydrophile Linker. Die lipophilen Linker bewegen sich zwischen die Alkylketten des Tensids in der Ölphase und vergrößern die Kontaktflächen zum Öl. Hydrophile Linker setzten sich in der Grenzschicht zwischen die Kopfgruppen der Tensidmoleküle. Dort verringern sie die Wechselwirkung der Kopfgruppen untereinander und vergrößern zudem die Oberfläche der Mizelle. |
---|
119 | | |
---|
120 | | Cotenside %welche Eigenschaften müssen sie haben, was/wie genau wirken sie? |
---|
121 | | sollten sich allgemein besser als das Haupttensid in der Ölphase lösen, also einen etwas kleineren HLB haben. |
---|
122 | | |
---|
| 121 | Durch den zusätzlichen Einsatz von Linkern und Cotensiden sollte ein das vorhandene Tensidsystem optimiert und nach Möglichkeit ein Mikroemulsionssystem hergestellt werden. Mikroemulsionen sind stabiler als Makroemulsionen und haben ein zeigen ein besser steuerbares Fließverhalten. |
---|