Index: diplomarbeit/Ausarbeitung.tex =================================================================== --- diplomarbeit/Ausarbeitung.tex (revision 162) +++ diplomarbeit/Ausarbeitung.tex (revision 168) @@ -46,9 +46,9 @@ \include{Kapitel_2} -\part{Säulenversuche} +%\part{Säulenversuche} -\include{Einfuehrung_Saeulen} -\include{Kapitel_3} -\include{Kapitel_4} +%\include{Einfuehrung_Saeulen} +%\include{Kapitel_3} +%\include{Kapitel_4} \begin{appendix} Index: diplomarbeit/Kapitel_1.tex =================================================================== --- diplomarbeit/Kapitel_1.tex (revision 167) +++ diplomarbeit/Kapitel_1.tex (revision 168) @@ -125,18 +125,18 @@ Zunächst wurde eine zweiprozentige Tensidlösung hergestellt. Hierzu wurde Tensid in eine $250 ml$ Glasflasche eingewogen und mit Wasser auf die gewünschte Masse aufgefüllt. Der Ansatz wurde ermärmt und gerührt bis zur vollständigen Auflösung des Tensids. -Von der Tensidlösung wurden ein Teil in eine $100 ml$-Flasche überführt. Diese wurde mit einem %blauer Schraubverschluss mit Stopfen -verschlossen. Zur Tensidlösung wurde nun die gleiche Masse an $CS_2$ gegeben und das ganze gut geschüttelt, so dass eine gleichmäßig Emulsion entstand. +Von der Tensidlösung wurden ein Teil in eine $100 ml$-Flasche überführt. Diese wurde verschlossen mit einer Schraubkamme aus PP mit PTFE-Inlay und Luer-Anschlüssen. Zur Tensidlösung wurde nun die gleiche Masse an $CS_2$ gegeben und das ganze gut geschüttelt, so dass eine gleichmäßig Emulsion entstand. -Die Emulsion wurde auf acht $15 ml$-Vials verteilt, wobei die Zugabe über Mininert-Ventile erfolgte. Der erste Ansatz $l0$ blieb als als Referenz ohne Zusatz. In die weiteren Vials wurde je ein Linker oder ein Cotensid zugegeben. Die Zugabe erfolgte durch langames zutropfen mittels einer $1 ml$- Spritze, welches durch mehrmaliges Verschütteln unterbrochen wurde. +Die Emulsion wurde auf acht $15 ml$-Vials verteilt, wobei die Zugabe über Mininert-Ventile erfolgte. Der erste Ansatz $l0$ blieb als als Referenz ohne Zusatz. In die weiteren Vials wurde je ein Linker oder ein Cotensid zugegeben. Die Zugabe erfolgte durch langames zutropfen mittels einer $1 ml$- Spritze, welches durch mehrmaliges Verschütteln unterbrochen wurde. Da das PEG als Feststoff vorlag wurde es zunächst in Wasser gelöst und als neunprozentige Lösung zugegeben. -Die fertigen Ansätze wurden über Nacht in ein auf $20°C$ temperiertes Wasserbad gestellt. +Die fertigen Ansätze wurden über Nacht in ein auf $20°C$ temperiertes Wasserbad gestellt um die Einstellung eines Gleichgewichtszustandes zu ermöglichen. \subsection{Erstellen eines Dreikomponentensystems vor Zugabe des Öls} -In der Literatur besteht Uneinigkeit darüber, ob die Reihenfolge der Komponentenzugabe bei der Erstellung einer Mikroemulsion eine Rolle spielt oder nicht. Da die erste Versuchsreihe nicht den gewünschten Erfolg zeigte, wurde daher der Prozess geändert. Es wurde zunächst ein Dreikomponentensystem aus Tensid, Wasser und Cotensid/Linker hergestellt und dann das CS2 zugegeben. Die Überlegung hierbei war, möglichst bereits ein Mikroemulsionssystem zu erzeugen, welches dann die weitere hydrophobe Komponente aufnehmen kann. Auch einer verminderte Eindringung des Linkers in die schon bestehenden Mizellen durch Abschirmwirkung des Tenisids sollte so entgegengewirkt werden. +In der Literatur besteht Uneinigkeit darüber, ob die Reihenfolge der Komponentenzugabe bei der Erstellung einer Mikroemulsion eine Rolle spielt oder nicht. Da die erste Versuchsreihe nicht den gewünschten Erfolg zeigte, wurde daher der Prozess geändert. Es wurde zunächst ein Dreikomponentensystem aus Tensid, Wasser und Cotensid/Linker hergestellt und dann das $CS_2$ zugegeben. Die Überlegung hierbei war, möglichst bereits ein Mikroemulsionssystem zu erzeugen, welches dann die weitere hydrophobe Komponente aufnehmen kann. Auch einer verminderte Eindringung des Linkers in die schon bestehenden Mizellen durch Abschirmwirkung des Tenisids sollte so entgegengewirkt werden. +Dieses Verfahren bot den Vorteil. dass das PEG nicht zuvor gelöst werden musste, sondern direkt zugegeben werden konnte. -In wiederum acht Vials wurde die zweiprozentige Tensidstammlösung vorgelegt. Der Linker bzw das Cotensid wurde langsam zugetropft und die Lösung immer wieder durch Schütteln vermischt. Dabei wurde darauf geachtet, ob sich eine leichte Trübung einstellte. Diese ist ein Zeichen dafür, dass entweder eine makromolekulare Emulsion entsteht, oder die Löslichkeit der Komponenten inneinander überschritten wird. An diesem Punkt muss wieder Tensidlösung zugegeben werden, um ins Mikroemulsionsystem zurückzugelangen. %Das macht aber nur Sinn wenn echt MO vorliegt, sonst tut das net -Eine solche Trübung stellte sich nur bei den beiden langkettigen Alkoholen ein. Alle anderen Lösungen blieben auch bei mehr als $10\%$ Linker noch klar, sodass die Zugabe abgebrochen wurde. +In wiederum acht Vials wurde die zweiprozentige Tensidstammlösung vorgelegt. Der Linker bzw. das Cotensid wurde langsam zugetropft und die Lösung immer wieder durch Schütteln vermischt. Dabei wurde darauf geachtet, ob sich eine leichte Trübung einstellte. Diese ist ein Zeichen dafür, dass entweder eine makromolekulare Emulsion entsteht, oder die Löslichkeit der Komponenten inneinander überschritten wurde und eine Komponente auszufallen beginnt. Geht man davon aus, dass vorher Mikrkoemulsion vorlag, muss an diesem Punkt muss Tensidlösung zugegeben werden, um ins Mikroemulsionsystem zurückzugelangen. +Eine solche Trübung stellte sich nur bei den beiden langkettigen Alkoholen ein. Alle anderen Lösungen blieben auch bei mehr als $10\%$ Linker noch klar, so dass die Zugabe abgebrochen wurde. Zu der Dreikomponentenmischung wurde das CS2 unter mehrmaligem verschütteln zugetropft. Das CS2 sollte sich vollständig lösen, maximal wurden jedoch $50\%$ zugegeben. Die Mischungen wurden über Nacht ins $20 °C$ warme Wasserbad gestellt. Index: diplomarbeit/Kapitel_2.tex =================================================================== --- diplomarbeit/Kapitel_2.tex (revision 164) +++ diplomarbeit/Kapitel_2.tex (revision 168) @@ -17,13 +17,18 @@ \subsection{Messergebnisse} -Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen $15$ und $50$ g/l. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm. Zur Berechnung des Solubilisierungspotentials wird die Masse an gelöster Schwerphase auf die Masse an Tensid bezogen: $S=m_{CDS}/m_{Surfactant}$ +Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen $15$ und $50$ g/l. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm. -Die gemessene Oberflächenspannung unterstreicht diese Annahme. Sie lag für die Kontrollproben ohne Tensid bei $60$ bis $70$ mN/m, für alle anderen Proben konstant bei $40$ mN/m. Dies erklärt sich so, dass bei erreichen der CMC sämtliche Grenzflächen mit Tensidmolekülen besetzt sind und sich die Tensidmoleküle in den thermodynamisch nächstgünstigsten Zustand begeben. Sie lagern sich im inneren des Lösemittels zu Mizellen zusammen. Die Grenzflächen bleiben unverändert, also bleibt die Grenz-/ bzw Oberflächenspannung konstant mit erreichen der CMC. +Dieses wird berechnet, indem die Masse an gelöster Schwerphase auf die Masse an Tensid bezogen wird: $S=m_{CDS}/m_{Surfactant}$. Im betrachteten Konzentrationsbereich fällt das Solubilisierungspotential bei Zugabe von Tensid zunächst stark ab um dann abzuflachen. Der Verlauf lässt sich mit der Mizellbildung erklären. So lagern sich zunächst Tensidmoleküle an die Grenzfläche an, senken die Grenzflächenspannung und erhöhen die Solubilisierung sehr rasch. Dieser Effekt wird bereits durch kleinste Mengen eines Emulgators erreicht. Bei erreichen der CMC ändert sich die Oberflächenspannung nicht mehr und eine weitere Solubilisierung wird nur noch durch die Eilagerung in Mizellen erreicht. Da in einer Mizelle die NAPL-Moleküle nicht nur angelagert, sondern komplett von Tensidmolekülen umschlossen werden, sind hier mehr Tensidmoleküle notwendig. Der Verbrauch an Tensid steigt, im Verhältnis zur gelösten Schwerphase. -Die Dichte war nur sehr gering erhöht mit $1,02$ bis $1,03$ g/ml. Ebenso die Viskosität, die mit steigender Tensidkonzentration anstieg und ihr Maximum bei $1,6 m^{2}$ erreichte. +Die gemessene Oberflächenspannung fällt zunächst steil ab um dann auf einem konstanten Niveau zu bleiben. Sie lag für die Kontrollproben ohne Tensid bei $65$ mN/m, für alle anderen Proben bei $40$ mN/m. %Dies erklärt sich so, dass bei erreichen der CMC sämtliche Grenzflächen mit Tensidmolekülen besetzt sind und sich die Tensidmoleküle in den thermodynamisch nächstgünstigsten Zustand begeben. Sie lagern sich im inneren des Lösemittels zu Mizellen zusammen. Die Grenzflächen bleiben unverändert, also bleibt die Grenz-/ bzw Oberflächenspannung konstant mit erreichen der CMC. +Wie beschrieben ist dies ein Effekt der bei Überschreiten der CMC auftritt. + +Die Dichte war für alle Proben nur gering erhöht mit $1,02$ bis $1,03$ g/ml. Ebenso die Viskosität, die mit steigender Tensidkonzentration anstieg und ihr Maximum bei $1,6 m^{2}/s$ erreichte. + +Die Messergebnisse sind in Abbildung \ref{pic:kleine} grafisch dargestellt. \subsection{Zusamenfassung und Bewertung} -Bereits bei einer extrem niedrigen Tensidkonzentrationen von $0,3\%$ kommt es zu einer schnellen und deutlichen Absenkung der Ober- und Grenzflächenspannung. Die CMC wird also schon bei sehr niedrigen Tensidkonzentrationen erreicht. Passend dazu steigt das Volumen der leichten Phase bei überschreiten der CMC sprunghaft an. Dies erklärt sich durch den Platzbedarf der Mizellen. Der stetige Anstieg der Messgrößen Masse und Dichte zeigt, dass die maximale Löslichkeit noch nicht erreicht ist und mit steigender Tensidkonzentration auch noch mehr DNAPL gelöst werden kann. Das Volumen ändert sich hier nicht mehr. Die Mizellen werden nicht größer, sie lagern aber mehr DNAPL in ihr Inneres ein. Dadurch verringern sich dann wieder die Elektrostatischen Kräfte zwischen den Mizellen und somit der Platz- und Lösemittelbedarf. +Bereits bei einer extrem niedrigen Tensidkonzentrationen von $0,3\%$ kommt es zu einer schnellen und deutlichen Absenkung der Ober- und Grenzflächenspannung. Die CMC wird also schon bei sehr niedrigen Tensidkonzentrationen erreicht. Passend dazu steigt das Volumen der leichten Phase bei überschreiten der CMC sprunghaft an. Dies erklärt sich durch den Platzbedarf der sich bildenten Mizellen. Der stetige Anstieg der Messgrößen Masse und Dichte zeigt, dass die maximale Löslichkeit noch nicht erreicht ist und mit steigender Tensidkonzentration auch noch mehr DNAPL gelöst werden kann. Das Volumen der leichten Phase ändert sich hier aber nicht mehr. Die Mizellen werden nicht größer, sie lagern aber mehr DNAPL in ihr Inneres ein. Das führt zu einem Anstieg der Dichte, welcher hier allerdings noch gering ausgeprägt ist. %Dadurch verringern sich dann wieder die Elektrostatischen Kräfte zwischen den Mizellen und somit der Platz- und Lösemittelbedarf. \begin{figure} @@ -38,15 +43,17 @@ \subsection{Aussehen und Stabilität} -Die Proben bildeten eine milchig weiße Leichtphase und eine unterschiedlich stark ausgeprägte, rosa bis rot gefärbte Mittelphase aus. Proben mit sehr hoher Tensidkonzentration wirkten schwammig und waren sehr Viskos. So war es nach Einstellen eines Gleichgewichtszustandes kaum mehr möglich, die Probe neu zu verschütteln. Koalszenz und damit Entmischung der Emulsion konnte über den Beobachtungszeitraum von zwei Wochen nicht beobachtet werden. +Die Proben bildeten eine milchig weiße Leichtphase und eine unterschiedlich stark ausgeprägte, rosa bis rot gefärbte Mittelphase aus. Proben mit sehr hoher Tensidkonzentration wirkten schwammiartig und waren sehr viskos. So war es nach Einstellen eines Gleichgewichtszustandes kaum mehr möglich, die Probe neu zu verschütteln. Koalszenz und damit Entmischung der Emulsion konnte über den Beobachtungszeitraum von zwei Wochen nicht festgetellt werden. \subsection{Messergebnisse} -Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund $4\%$, um dann wieder leicht abzufallen. Das maximale Solubilisierungspotential wurde bei $2\%$ Tensid erreicht. Allerding stieg die Viskosität in diesem Bereich schon leicht an und überschritt $2 m^{2}/s$. Oberhalb von $6 \% $Tensid stieg die Viskosität steil an auf Werte über $40 m^{2}/s$. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Auschäumen in die Kapillare drücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet. +Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund $4\%$. Das maximale Solubilisierungspotential wurde bei $5\%$ Tensid erreicht. Allerding stieg die Viskosität ab 3\% Tensid an und überschritt war bei 5\% Tensid bereits bei $5 m^{2}/s$. Oberhalb von $5 \% $Tensid stieg die Viskosität stark an, auf Werte über $40 m^{2}/s$. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kappillare $20 µm$ ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare drücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet. Sie dürften aber dennoch sehr hoch liegen. -Die Oberflächenspannung war über alle Konzentrationen konstant bei $35 mN/m$. Die Dichte stieg ab einer Tensidkonzentration von $2 \%$ an, bis auf Werte von $1,1 g/L$. Es lag also eine deutlich erhöhte Dichte vor. +Die Oberflächenspannung lag für alle Tensid enthaltenden Proben konstant bei $35 mN/m$, nur die Referenzproben ohne Tensid lagen über $60 mN/m$. Das entspricht auch den Messwerten aus der CMC-Reihe. + +Die Dichte stieg ab einer Tensidkonzentration von $2 \%$ an, bis auf Werte von $1,1 g/L$. Die Dichte und damit auch die Masse an gelöster Schwerphase war also deutlich erhöht. \subsection{Zusammenfassung und Bewertung} -Das optimale Solubilisierungspotential liegt bei $2 \%$ Tensid. Allerdings steigt hier auch die Dichte und Viskosität bereits an. Durch die erhöhte Dichte können Probleme wie vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da bei höheren Vikositäten die Pumpfähigkeit verringert wird. % genauer, mehr +Das optimale Solubilisierungspotential liegt bei $2 - 5 \%$ Tensid. Allerdings ist hier auch die Dichte und die Viskosität bereits stark erhöht. Durch die erhöhte Dichte kann die vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da bei höheren Vikositäten das Fließverhalten verändert wird. Die Vorhersage des Verhaltens der Emulsion im Boden bei induziertem Fluss wird schlechter vorhersagbar. % genauer, mehr