Show
Ignore:
Timestamp:
05/15/12 17:19:06 (13 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Kapitel_4.tex

    r174 r176  
    55\section{Phasenverhalten in der S"aule} 
    66 
     7Abhängig von der homogennität der Sandpackung konnte während des Aufsättigen der Säulen mit CS$_2$ das anlegen von Schichten ("layering", vgl Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes rießeln des Sandes, beispielsweise, wenn dieser feucht ist, das Fallrohr nicht gleichmäßig schwingt oder schief eingebaut ist. Durch das Layering ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.\bigskip 
     8 
     9Vor allem im Mittelsand trat eine andere Unregelmäßigkeit auf: der Einschluss von Luft (vgl. Abbildung \ref{pic:säulenprobs}). Luft in der Säule ist unerwünscht, da sie Poren blockiert. Dies führt dazu, dass sich feste Flusspfade ausbilden und daher nicht mehr alle Bereiche der Säule in gleichem Maße durchströmt werden. Die Lufteinschlüsse werden durch die veränderte Lichtbrechung am Säulenrand sichtbar. Es gibt mehrere Möglichkeiten, wie Luft in die Säule gelangen kann. Zum einen kann sie sich vor dem Wassersättigen bereits in der Säule befinden. Nämlich dann, wenn das vorangegangene CO$_2$-fluten nicht ausreichte oder die Säule vor dem Wassersättigen längere Zeit mit undichten Verschlüssen stand. Luft kann aber auch mit dem Fluid eingetragen werden. Zum beispiel durch nicht ausreichend entgastes Wasser oder eingasen in Leitungen und Verbindungen durch den Unterdruck der Strömung sowie Partialdruck der Luft. Werden Luftblasen erst nach dem Aufsättigen mit CS$_2$ festgestellt, ist es auch möglich, dass dieses aus der Lösung ausgegast ist. Aufgrund der hohen Flüchtigkeit der Substanz kann dies vor allem bei höheren Temperaturen vorkommen. 
    710 
    811\begin{figure} 
     
    1720\end{figure} 
    1821 
     22Finger wie in Abbildung \ref{fingering_mob} im der zweiten Säule von links zu sehen,treten auf wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff. Die beiden mit Feinsand gepackten Säulen wurden versehendlich zu stark angefärbt.Zum Zeitpunkt als das Foto entstand war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, wärend darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. 
     23Bei anderen Versuchen konnten keine derartig ausgeprägte Finger beobachtet werden. 
     24%Ergebnisse Grenzflächentest Tracer 
     25Im gleichen Bild in der Säule rechts ist zu sehen wie Phase absinkt, das heißt vertikal mobilisiert wird.  
     26 
     27\begin{figure} 
     28\centering 
     29\includegraphics[width=\textwidth]{col_selection/fingering_mob} 
     30\caption{Fingering und Mobilisierung} 
     31\label{fingering_mob} 
     32\end{figure} 
    1933 
    2034\begin{figure} 
     
    3953\label{gequollen} 
    4054\end{figure} 
     55 
    4156 
    4257%BILDER!!!