Changeset 201 for diplomarbeit/Kapitel_4.tex
- Timestamp:
- 06/18/12 11:01:56 (12 years ago)
- Files:
-
- diplomarbeit/Kapitel_4.tex (modified) (7 diffs)
Legend:
- Unmodified
- Added
- Removed
- Modified
- Copied
- Moved
diplomarbeit/Kapitel_4.tex
r200 r201 4 4 \section{Auswertung der Messungen} 5 5 6 Die Messergebnisse der einzelnen Versuch sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen $29-34$) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid verwendet und eine Fließrate von $1$ ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen $35-38$) der mit einer Fließrate von ebenfalls $1$ ml/min aber einer nur einprozentigen Tensidlösung durchgeführt wurde. In Abbildung \ref{10+12} sinddie beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von $0,5$ ml/min durchgeführt wurden.6 Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen $29-34$) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid zur Sanierung verwendet und eine Fließrate von $1$ ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen $35-38$) der mit einer Fließrate von ebenfalls $1$ ml/min aber einer nur einprozentigen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von $0,5$ ml/min durchgeführt wurden. 7 7 8 8 \begin{figure} … … 32 32 Eine andere Möglichkeit ist die bessere Angreifbarkeit des feinverteilten DNAPLs. Feldversuche zur PAK-Sanierung der Landesanstalt für Umweltschutz Baden-Württemberg haben gezeigt, dass sich dispers verteilte kleine DNAPL-Tröpfchen gut mittels Tensidspülung sanieren lassen, nicht aber größere Plops oder Pools. \cite{LUBW.2001} Dieser Fall wäre denkbar unter der Annahme, dass die Dispersion, die durch das Verschütteln der Batchansätze entsteht nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Wobei eine vollständige Entmischung der Batchansätze nicht beobachtet werden konnte. 33 33 34 \subsection{Wiederfindungsrate} 35 36 Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt zum einen die steilere Kurve in den Graphen, zum anderen war Durchbruch der Emulsion auch optisch früher zu beobachten. Wobei das aufquellen des Tensids zu beginn der Sanierung im Mittelsand stärker ausgeprägt war. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. 37 38 39 \subsection{Dichte} 40 41 Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei $1,08$ g/ml für Feinsand und $0,6$ g/ml im Mittelsand. 42 34 43 35 44 \subsection{Oberfl"achenspannung} … … 38 47 39 48 40 \subsection{Dichte} 41 42 Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei $1,08$ g/ml für Feinsand und $0,6$ g/ml im Mittelsand. 43 44 \subsection{Wiederfindungsrate} 45 46 Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt zum einen die steilere Kurve in den Graphen, zum anderen war Durchbruch der Emulsion auch optisch früher zu beobachten. Wobei das aufquellen des Tensids zu beginn der Sanierung im Mittelsand stärker ausgeprägt schien. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die tatsächliche Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. 47 48 49 %Ein Außreißer ist hier Säule $52$. Hier war nach Start der Sanierung ein Problem aufgetreten, so dass der Fluss mehrere Stunden unterbrochen wurde. Diese führte zu einer teilweisen Mobilisation. Nach wieder anfahren des Versuchs bildeten sich zwei Fronten. 49 \subsection{Druck} 50 51 %Kolmation, siehe LUBW_Kehl 52 Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen (vgl. \cite{Lee.2001}, \cite{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. Für diesen Fall lässt sich bei Kenntnis des Druckverlaufs die Trapping Number über die Sanierung berechnen. Bei Eintritt von Mobilisation erreicht diese einen kritischen Wert. Über die Trappingnumber auf den NAPL-Austrag zurückgerechnet, lässt sich durch Variation eines eingehenden und Konstanthalten aller anderen Parameter, der Strömungsverlauf bei sich ändernden Randbedingungen darstellen, siehe Abschnitt \ref{nt}. 53 54 55 \section{Phasenverhalten in der S"aule} 56 57 %Säule $52$. Hier war nach Start der Sanierung ein Problem aufgetreten, so dass der Fluss mehrere Stunden unterbrochen wurde. Diese führte zu einer teilweisen Mobilisation. Nach wieder anfahren des Versuchs bildeten sich zwei Fronten. 50 58 %Zufrühes Umschalten Säule 30 51 59 %Analytik Säulen 51 52 53 … … 53 61 54 62 55 56 \subsection{Druck} 57 58 %Kolmation, siehe LUBW_Kehl 59 Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen (vgl. \cite{Lee.2001}, \cite{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Leztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. 60 61 62 63 \section{Phasenverhalten in der S"aule} 64 65 Abhängig von der homogennität der Sandpackung konnte während des Aufsättigen der Säulen mit CS$_2$ das anlegen von Schichten ("layering", vgl Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes rießeln des Sandes, beispielsweise, wenn dieser feucht ist, das Fallrohr nicht gleichmäßig schwingt oder schief eingebaut ist. Durch das Layering ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.\bigskip 63 Abhängig von der Homogennität der Sandpackung konnte während des Aufsättigen der Säulen mit CS$_2$ das anlegen von Schichten ("layering", vgl Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes rießeln des Sandes, beispielsweise, wenn dieser feucht ist, das Fallrohr nicht gleichmäßig schwingt oder schief eingebaut ist. Durch das Layering ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.\bigskip 66 64 67 65 Vor allem im Mittelsand trat eine andere Unregelmäßigkeit auf: der Einschluss von Luft (vgl. Abbildung \ref{pic:säulenprobs}). Luft in der Säule ist unerwünscht, da sie Poren blockiert. Dies führt dazu, dass sich feste Flusspfade ausbilden und daher nicht mehr alle Bereiche der Säule in gleichem Maße durchströmt werden. Die Lufteinschlüsse werden durch die veränderte Lichtbrechung am Säulenrand sichtbar. Es gibt mehrere Möglichkeiten, wie Luft in die Säule gelangen kann. Zum einen kann sie sich vor dem Wassersättigen bereits in der Säule befinden. Nämlich dann, wenn das vorangegangene CO$_2$-fluten nicht ausreichte oder die Säule vor dem Wassersättigen längere Zeit mit undichten Verschlüssen stand. Luft kann aber auch mit dem Fluid eingetragen werden. Zum beispiel durch nicht ausreichend entgastes Wasser oder eingasen in Leitungen und Verbindungen durch den Unterdruck der Strömung sowie Partialdruck der Luft. Werden Luftblasen erst nach dem Aufsättigen mit CS$_2$ festgestellt, ist es auch möglich, dass dieses aus der Lösung ausgegast ist. Aufgrund der hohen Flüchtigkeit der Substanz kann dies vor allem bei höheren Temperaturen vorkommen. … … 78 76 \end{figure} 79 77 80 Finger wie in Abbildung \ref{fingering_mob} im der zweiten Säule von links zu sehen, treten aufwenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff. Die beiden mit Feinsand gepackten Säulen wurden versehendlich zu stark angefärbt.Zum Zeitpunkt als das Foto entstand war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, wärend darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt.78 Finger wie in Abbildung \ref{fingering_mob} im der zweiten Säule von links zu sehen, treten auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff. Die beiden mit Feinsand gepackten Säulen wurden versehendlich zu stark angefärbt.Zum Zeitpunkt als das Foto entstand war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, wärend darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. 81 79 Bei anderen Versuchen konnten keine derartig ausgeprägte Finger beobachtet werden. 82 80 %Ergebnisse Grenzflächentest Tracer 83 81 Im gleichen Bild in der Säule rechts ist zu sehen wie Phase absinkt, das heißt vertikal mobilisiert wird. 84 82 Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und NAPL so klein wird, dass sich die beiden Phasen unabhängig ineinander bewegen können. Je nach dem welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der NAPL mit der Strömung als Bulkphase vor der Tensidlösung her oder aber sinkt nach unten ab. Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. 85 Mobilisierung trat vornehmlich im Mittelsand auf. Aufgrund der größeren Poren sind hier die Kapillarkräfte geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number} geben. Diese kann als kritische Größe ausgedrückt werden. Penell %Penell 1996 suchen 86 hat für Sand ähnlicher Strucktur wie der verwendete und einen DNAPL die kritische Trappingnumber bestimmt als $2*10^{-5}$ - $5*10^{-5}$. 83 Mobilisierung trat vornehmlich im Mittelsand auf. Aufgrund der größeren Poren sind hier die Kapillarkräfte geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number} geben. Diese kann als kritische Größe ausgedrückt werden. Penell \cite{Pennell.1996} hat in Sand ähnlicher Strucktur und Körnung für PCE die kritische Trappingnumber bestimmt als $2*10^{-5}$ - $5*10^{-5}$. 87 84 % Trapping Number für den kritischen Bereich berechnen und gucken ob das so hinkommt!!! 88 85 … … 143 140 144 141 \subsection{Trapping Number} 142 \label{nt} 145 143 146 144 Die Trapping Number beschreibt das Kräftegleichgewicht zwischen Kapillarkräften, die den NAPL in den Porenräumen festhalten, und den viskosen und Gravitationskräften, die den Weitertransport fördern. … … 190 188 Da die Anteile der Wechselwirkungskräfte nicht bekannt sind, soll hier dennoch mit der Näherung von Antonow gerechnet werden. Zu bedenken ist, dass die berechnete Grenzflächenspannung größer sein dürfte, als die tatsächliche Grenzflächenspannung. 191 189 192 Mit dieser Berechnungsart wurden Grenzflächenminima um $3$ mN/m gefunden. 190 Mit dieser Berechnungsart wurden Grenzflächenminima um $3$ mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein da Mobilisierung beobachtet wurde, welche in der Regel erst bei Werten unter $1$ mN/m auftritt. 191 %Noch mal nachrecherchieren ab wann es standartmäßig zu Mobilisierung kommt. 193 192 194 193 Nach Li (\cite{Li, 2007}) lässt sich aus der Trapping Number die Residualsättigung berechnen, wie in Gleichung\ref{eqn:Sn} dargestellt.