Index: /diplomarbeit/Kapitel_3.tex =================================================================== --- /diplomarbeit/Kapitel_3.tex (revision 200) +++ /diplomarbeit/Kapitel_3.tex (revision 201) @@ -59,5 +59,5 @@ %Einzelteile beschreiben und ihre Funktion -Zunächst wurde der Untere Teil an die Säule angbaut. Eine Ringscheibe (c) und ein mit O-Ring (h) ausgestatteter Dichtring (d) wurden über die Säule geschoben. Der innere O-Ring (f) der für die Dichtigkeit zwischen Abdeckung (e) und Säulenrand sorgt, wurde so in die Vertiefung der Abdeckung eingelegt, dass er auch beim umdrehen nicht mehr heraussprang. Die Abdeckung wurde dann auf die umgedrehte Säule aufgelegt und der O-Ring (g), der für die Dichtigkeit zwischen Abdeckung nd Deckplatte (b) sorgt, in die vorgesehene Vertiefung gelegt. Die Dechplatte (b) wurde aufgesetzt und alle komponennten mit drei Schrauben (i) und Muttern fest miteinander verbunden. Auf die überstehenden Schraubenenden wurden die Füße (s) geschraubt und die Säule auf diese gestellt. Auf dem Säulenboden wurde nun zuerst eine Lochplatte und dann ein Netz, bzw für Feinsand eine direkt mit einem feinen Netz umwickelte Lochplatte platziert. Die Säulen wurden mit einem temporären Schutz am oberen Glasrand ausgestattet und mit Sand gepackt.%, siehe Abschnitt \ref{subsubsec:packen}. +Zunächst wurde der untere Teil an die Säule angbaut. Eine Ringscheibe (c) und ein mit O-Ring (h) ausgestatteter Dichtring (d) wurden über die Säule geschoben. Der innere O-Ring (f) der für die Dichtigkeit zwischen Abdeckung (e) und Säulenrand sorgt, wurde so in die Vertiefung der Abdeckung eingelegt, dass er auch beim umdrehen nicht mehr heraussprang. Die Abdeckung wurde dann auf die umgedrehte Säule aufgelegt und der O-Ring (g), der für die Dichtigkeit zwischen Abdeckung nd Deckplatte (b) sorgt, in die vorgesehene Vertiefung gelegt. Die Dechplatte (b) wurde aufgesetzt und alle komponennten mit drei Schrauben (i) und Muttern fest miteinander verbunden. Auf die überstehenden Schraubenenden wurden die Füße (s) geschraubt und die Säule auf diese gestellt. Auf dem Säulenboden wurde nun zuerst eine Lochplatte und dann ein Netz, bzw für Feinsand eine direkt mit einem feinen Netz umwickelte Lochplatte platziert. Die Säulen wurden mit einem temporären Schutz am oberen Glasrand ausgestattet und mit Sand gepackt.%, siehe Abschnitt \ref{subsubsec:packen}. Die Höhe der Sandfüllung wurde mit einem Abstandshalter überprüft und notfallls durch vorsichtiges entfernen oder zugeben von Sand mittels einem Löffel ausgeglichen. Auf den Sand wurde wiederum ein Netz und eine Lochscheibe gelegt. Die Lochscheibe war mittels Draht mit der Feder (o) verbunden. Um die Feder herum bzw in deren Mitte wurden die Abstandshalter (p und q) plaziert. Ringscheibe (c), Dichtring (d), Abdeckung (e) und O-Ringe wurden wie im Bodenteil verbaut und verschraubt. Boden und Kopf der Säule wurden mit den Gewindestangen (j) verbunden. Alle Muttern (r) wurden mit $9$ kN/m angezogen. @@ -153,11 +153,15 @@ Sämtliche zu- und abgeführten Chemikalien wurden massemäßig bilanziert. Hierzu standen sechs Laborwaagen zur Verfügung. Die mit Wasser bzw Tensidlösung oder Isopropanol befüllten Vorratsflaschen wurden auf eigens dafür vorgesehenen Waagen (Firma, Parameter) plaziert. Der Ausfluss aus den Flaschen wurde kontinuierlich mittels Messprotokoll auf dem Laborrechner erfasst und die Masse und Zeit festgehalten. -Für Einwaagen stand eine Feinwaage (Firma, Parameter) und eine weitere Laborwaage zur Verfügung (Firma, Kennzeichen). Hier wurden auch alle Proben gewoogen. +Für Einwaagen stand eine Feinwaage (Firma, Parameter) und eine weitere Laborwaage zur Verfügung (Firma, Parameter). Hier wurden auch alle Proben gewoogen. Die Säulen konnten aufgrund ihres zu hohen Gewichtes nicht im Labor gewogen werden. Hier wurde eine Industriewaage (Firma, Parameter) zurückgegriffen. +%Bezeichnung und Kenngrößen der Laborwaagen \subsection{Probenahmegefäße} -Zur Probenahme wurden Glasflaschen in unterschiedlichen Größen, von $40 ml$ bis $1L$, verwendet. Die Flaschen wurden mit Schaubkappen (T-Serie, Omnifit, bzw Eigenbau) mit PTFE-Dichtung und zwei integrierten konischer Durchführungen verschlossen. %Bild Deckel -Durch die Durchführungen konnten die Flaschen mittels Schläuchen an den Auslauf der Säulen angeschlossen werden. Um die Verdampfungsverluste gering zu halten, aber eine Druckaufbau zu verhindern, wurde die zweite Durchführung mit einer gekürzten Nadel verschlossen. Die gefüllten Flaschen wurden bis zur weiteren Untersuchung des Eluats mit PTFE-Stopfen verschlossen. +Zur Probenahme wurden Glasflaschen in unterschiedlichen Größen, von $100$ ml bis $1$L, verwendet. Die Flaschen wurden mit Schaubkappen (T-Serie, Omnifit) mit PTFE-Dichtung und zwei integrierten konischer Durchführungen verschlossen. %Bild Deckel +Durch die Durchführungen konnten die Flaschen mittels Schläuchen an den Auslauf der Säulen angeschlossen werden. Um die Verdampfungsverluste gering zu halten, aber eine Druckaufbau zu verhindern, wurde auf die zweite Durchführung eine gekürzten Nadel mit einem Durchmesser von $6$ mm gesteckt. Die gefüllten Flaschen wurden bis zur weiteren Untersuchung des Eluats mit PTFE-Stopfen verschlossen. +Kleine Fraktionen bis $60 ml$ wurden in Vials mit passenden, den Omnifit-Deckeln nachemfundenen Schraubkappen aufgefangen. Die kleinen Flaschen gestalteten den Aufbau bei Benutzung des Autosamplers mit insgesamt $32$ Schläuchen übersichtlicher und verringern die Verluste durch ausdampfen, aufgrund des kleinen Luftraums. + + \subsection{Ventile} @@ -166,7 +170,9 @@ \begin{figure} \subfigure[Dreiwegeventile zur Steuerung des Zulaufs] -{\includegraphics[width=0.49\textwidth]{dreiwege}} +{\label{pic:dreiwege} +\includegraphics[width=0.49\textwidth]{dreiwege}} \subfigure[Umschaltventile und Verteiler] -{\includegraphics[width=0.49\textwidth]{umschalt}} +{\label{pic:umschalt} +\includegraphics[width=0.49\textwidth]{umschalt}} \caption{Ventile zur Steuerung des Flusses in den Säulen} \label{pic:Ventile} @@ -174,17 +180,14 @@ Vor den Pumpen und vor den Säulen waren Drei-Wege-Ventile %Material, Hersteller -verbaut. Über die Ventile vor den Pumpen konnte zum einen Blasenfreiheit des Fluids vor den Pumpen hergestellt werden. Zum anderen erwiesen sie sich auch als hilfreich bei der Wartung der Pumpen. Die vor den Säulen verbauten Ventile hatten die Aufgabe den Fluss zwischen Zulauf zu den Säulen und freiem Ausfluss, zum Spülen der Leitungen, zu lenken, bzw. dienten dem Umschalten zwischen Aufwärts- und Abwärtsströmung in der Säule. Die Anordnung ist in Abbildung \ref{pic:dreiwege} zu sehen. - -In den Bereichen des Versuchsaufbaus die mit dem Kontaminant in Berührung kamen, waren Umschaltventile (Edelstahl, Swagelog) verbaut. Hier wurde der FLuss zwischen DNAPL-Verteiler und direktem Zulauf, sowie Ausfluss nach unten aus der Säule bzw Aufwärtsströmung geschaltet. Bzw der Ausfluss nach oben aus der Säule bei Aufwärtsströmung bzw der Zulauf von oben. +verbaut. Über die Ventile vor den Pumpen konnte zum einen Blasenfreiheit nach ansaugen des Fluids vor den Pumpen hergestellt werden. Zum anderen erwiesen sie sich auch als hilfreich bei der Wartung der Pumpen. Die vor den Säulen verbauten Ventile hatten die Aufgabe den Fluss zwischen Zulauf zu den Säulen und freiem Ausfluss, zum Spülen der Zuleitungen, zu lenken, bzw. dienten dem Umschalten zwischen Aufwärts- und Abwärtsströmung in der Säule. Die Anordnung ist in Abbildung \ref{pic:dreiwege} zu sehen. + +In den Bereichen des Versuchsaufbaus die mit dem DNAPL in Berührung kamen, waren Umschaltventile (Edelstahl, Swagelog) verbaut. Die vordere Ventilreihe schaltete zwischen Verteiler oder direktem Zufluss über die jeweiligen Zuleitungen. Die hintere Ventilreihe sowie die oberhalb der Säulen angeordneten Ventile schalteten zwischen Auf- und Abwärtsdurchströmung der Säulen. Vgl. Abbildung \ref{pic:umschalt} Hinter den Säulen wurden Nadelventile %Material, Hersteller -eingebaut um für einen kontrollierten Druckabfall nach der Säule zu sorgen und so kavitation und damit ausgasen zu verhindern. - -Um ein Tauschen der Flaschen ohne unterbrechung des Flusses zu ermöglichen, wurden am Umschaltventile (Edelstahl, Swagelog) verbaut. Dadurch konnten jeweils zwei Flaschen an einen Kanal angeschlossen und manuell zwischen beiden umgeschaltet werden. -Um niedrigerer Fließrate fahren zu können und auch dabei Unterbrechungen zu vermeiden, wurde für weitere Versuche eine automatisierte Umschaltung eingeführt. Mit einem Schrittmotor wurden zu vorprogramierten Zeiten acht möglichen Ventilstellungen geschalten. -% Kleine Fraktionen bis $60 ml$ wurden in Vials mit passenden, den ??-Deckeln nachgebauten Schraubkappen aufgefangen. De kleinen Flaschen gectalten den Aufbau mit insgesamt $32$ Schläuchen übersichtlicher und verringern die Verluste durch ausdampfen, aufgrund des hier kleinen Luftraums. - - %Die Flaschen wurden das erste Mal kurz vor dem Durchbruch der Emulsion gewechselt. Danach wurde zunächst alle $0,3$ PV gewechselt, später dann nur noch nach $0,7$ PV. -%Das Umschalten auf Wasser erfolgte erst nach dem keine weiße Emulsion mehr in der Säule Sichtbar war und die Aufgefangene Flüssigkein in den Flaschen nicht mehr getrübt war. +eingebaut um für einen kontrollierten Druckabfall nach der Säule zu sorgen und so Kavitation und damit Ausgasen in den Schläuchen zu verhindern. + +Um ein Tauschen der Flaschen ohne Unterbrechung des Flusses zu ermöglichen, wurden an die hinter den Nadelventilen weitere Umschaltventile (Edelstahl, Swagelog) verbaut. Dadurch konnten jeweils zwei Flaschen an einen Kanal angeschlossen und manuell zwischen beiden umgeschaltet werden ohne den Fluss zu unterbrechen. +Um niedrigerer Fließrate fahren zu können und auch dabei Unterbrechungen zu vermeiden, wurde für weitere Versuche eine automatisierte Umschaltung eingeführt. Mit einem Schrittmotor wurden zu vorprogramierten Zeiten acht möglichen Ventilstellungen geschalten. Somit war es möglich bis zu acht Proben zu sammeln bevor Flaschen getauscht und das Motorprogramm neu gestartet werden musste. + @@ -197,6 +200,11 @@ Sobald die Säulen Wassergesättigt waren, konnten die Druckaufnehmer kalibriert werden. Dazu wurde die obere und untere Druckleitung zwischen einem Druckaufnehmer und dem Piezometer geöffnet. Als erstes wurde der Druck zwischen beiden Leitungen ausgeglichen. Dazu wurde eine Schlauchbrücke, die über Dreiwegeventile an die Piezometerleitungen angeschlossen war, geöffnet. Nachdem sich in beiden Leitungen die gleiche Druckhöhe eingestellt hatte wurde diese an die Druckaufnehmer angelegt, indem die Verbindungen wieder geöffnet wurden. Im zweiten Schritt wurde ein unterer und ein oberer Referenzpunkt gesetzt. Dazu wurde die Brücke wieder geöffnet und der Wasserspiegel in einem Piezometerrohr abgesenkt, wodurch er im anderen erhöht wurde. Die drei Kalibrierpunkte wurden mittels HART-Modem auf den Messrechner übertragen. Dort erfolgte die eigentliche Kalibrierung der Druckaufnehmer über die Steuerungssoftware (Simatic PDM, Siemens). %Die vorgenommenen Einstellungen wurden zudem in die Verwaltung von Nextview übernommen, da dort der Druckverlauf aufgezeichent wurde. -Die Säulen wurden durch Saniert indem zunächst mit einer Tensidlösung und anschließend mit Wasser gespült wurde. Um eine vollständige Sanierung zu erhalten und eine mögliche Restkontamination bilanzieren zu können wurden die Säulen mit Isopropanol (IPA / 2-Propanol) und einem weiteren Mal mit Wasser nachgespült. Die Randbedingungen der einzelnen Säulen sind in Tabelle \ref{tab:Bedingungen} aufgelistet. Von Tensidlösung auf Wasser wurde umgeschalten, sobald das gequollenem Tensid die Säule verlassen hatte. Das Ende der Wasserspülung wurde bestimmt durch messen der Oberflächenspannung. Mit fortgeschrittenr Verdünnung der Tensidreste in der Säule steigt diese wieder auf den Wert von Wasser, $72,75$ mN/m, an. - +Die Säulen wurden saniert indem zunächst mit einer Tensidlösung und anschließend mit Wasser gespült wurde. Um eine vollständige Sanierung zu erhalten und eine mögliche Restkontamination bilanzieren zu können wurden die Säulen mit Isopropanol (IPA) und einem weiteren Mal mit Wasser nachgespült. Die Randbedingungen der einzelnen Säulen sind in Tabelle \ref{tab:Bedingungen} aufgelistet. +Die Probenahmeflaschen wurden das erste Mal kurz vor dem Durchbruch der Emulsion gewechselt. Danach wurde zunächst alle $0,3$ PV gewechselt, später dann nur noch nach $0,7$ PV. Das Umschalten auf Wasserspülung erfolgte erst nach dem keine weiße Emulsion mehr in der Säule sichtbar war und die aufgefangene Flüssigkeit in den Flaschen klar war.Das Ende der Wasserspülung wurde bestimmt durch Messen der Oberflächenspannung. Mit fortgeschrittenr Verdünnung der Tensidreste in der Säule steigt diese wieder auf den Wert von Wasser, $72,75$ mN/m, an. + + + + + \begin{sidewaystable} @@ -256,7 +264,7 @@ Die Dichte wurde durch Wägung eines definierten Volumens für alle Proben bestimmt. $10$ ml-Gläschen wurden mit einem Gummistopfen versehen und gewogen. Dann wurden mittels einer Spritze $2,5 ml$ Probe zugegeben und wieder gewogen. Aus der Massendiverenz geteilt durch das zugegebene Volumen ergibt sich die Dichte der Probe in Gramm pro Milliliter. -Die Oberflächenspannung (OFS) wurde mittels einem Blasendrucktensiometer (xx, Sinterface) durchgeführt. Im genutzten "Fast-Scan-Modus" des Geräts dauerte die Messung bis zu zehn Minuten, daher wurden nicht alle Proben gemessen. Die Messung erfolgte parallel zum Versuch da sie darüber aufschluss gibt, wann die maximal gelöste Konzentration (niedrigste OFS) vorliegt und wann die Sanierung beendet ist (OFS entspricht der von Wasser: $72,75$ mN/m). - -Für Einzelne Proben wurde zudem die Viskosität bestimmt. Diese wurde mit einem Ubbelohde-Vikosimeter dreifach gemessen. Da die Viskosität im Versuchsverlauf schnell wieder abnahm und die Messung sehr Zeitaufwändig war, wurde sie nur an den Proben durchgeführt, für die aufgrund des Aussehens und des Fließverhaltens eine erhöhte Viskosität zu erwarten war. +Die Oberflächenspannung (OFS) wurde mittels einem Blasendrucktensiometer (BPA-1P, Sinterface) durchgeführt. Im genutzten "Fast-Scan-Modus" des Geräts dauerte die Messung bis zu zehn Minuten, daher wurden nicht alle Proben gemessen. Die Messung erfolgte parallel zum Versuch da sie darüber Aufschluss gibt, wann die maximal gelöste Konzentration (niedrigste OFS) vorliegt und wann die Sanierung beendet ist (OFS entspricht der von Wasser: $72,75$ mN/m). + +Für einzelne Proben wurde zudem die Viskosität bestimmt. Diese wurde mit einem Ubbelohde-Vikosimeter dreifach gemessen. Da die Viskosität im Versuchsverlauf schnell wieder abnahm und die Messung sehr Zeitaufwändig war, wurde sie nur an den Proben durchgeführt, für die aufgrund des Aussehens und des Fließverhaltens eine erhöhte Viskosität zu erwarten war. Der Relativdruck in der Säule wurde mit Druckaufnehmern (Sitrans-P DS$3$, Siemens, Karlsruhe) gemessen. Diese wurden über T-Stücke (Swagelog) an die Zu- und Ausleitung der Säulen angeschlossen. Dadurch konnnten die Druckunterschiede in der Säule bei Änderung des Fluids dargestellt werden. Index: /diplomarbeit/Kapitel_4.tex =================================================================== --- /diplomarbeit/Kapitel_4.tex (revision 200) +++ /diplomarbeit/Kapitel_4.tex (revision 201) @@ -4,5 +4,5 @@ \section{Auswertung der Messungen} -Die Messergebnisse der einzelnen Versuch sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen $29-34$) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid verwendet und eine Fließrate von $1$ ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen $35-38$) der mit einer Fließrate von ebenfalls $1$ ml/min aber einer nur einprozentigen Tensidlösung durchgeführt wurde. In Abbildung \ref{10+12} sind die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von $0,5$ ml/min durchgeführt wurden. +Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen $29-34$) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid zur Sanierung verwendet und eine Fließrate von $1$ ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen $35-38$) der mit einer Fließrate von ebenfalls $1$ ml/min aber einer nur einprozentigen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von $0,5$ ml/min durchgeführt wurden. \begin{figure} @@ -32,4 +32,13 @@ Eine andere Möglichkeit ist die bessere Angreifbarkeit des feinverteilten DNAPLs. Feldversuche zur PAK-Sanierung der Landesanstalt für Umweltschutz Baden-Württemberg haben gezeigt, dass sich dispers verteilte kleine DNAPL-Tröpfchen gut mittels Tensidspülung sanieren lassen, nicht aber größere Plops oder Pools. \cite{LUBW.2001} Dieser Fall wäre denkbar unter der Annahme, dass die Dispersion, die durch das Verschütteln der Batchansätze entsteht nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Wobei eine vollständige Entmischung der Batchansätze nicht beobachtet werden konnte. +\subsection{Wiederfindungsrate} + +Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt zum einen die steilere Kurve in den Graphen, zum anderen war Durchbruch der Emulsion auch optisch früher zu beobachten. Wobei das aufquellen des Tensids zu beginn der Sanierung im Mittelsand stärker ausgeprägt war. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. + + +\subsection{Dichte} + +Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei $1,08$ g/ml für Feinsand und $0,6$ g/ml im Mittelsand. + \subsection{Oberfl"achenspannung} @@ -38,14 +47,13 @@ -\subsection{Dichte} - -Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei $1,08$ g/ml für Feinsand und $0,6$ g/ml im Mittelsand. - -\subsection{Wiederfindungsrate} - -Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt zum einen die steilere Kurve in den Graphen, zum anderen war Durchbruch der Emulsion auch optisch früher zu beobachten. Wobei das aufquellen des Tensids zu beginn der Sanierung im Mittelsand stärker ausgeprägt schien. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die tatsächliche Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. - - -%Ein Außreißer ist hier Säule $52$. Hier war nach Start der Sanierung ein Problem aufgetreten, so dass der Fluss mehrere Stunden unterbrochen wurde. Diese führte zu einer teilweisen Mobilisation. Nach wieder anfahren des Versuchs bildeten sich zwei Fronten. +\subsection{Druck} + +%Kolmation, siehe LUBW_Kehl +Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen (vgl. \cite{Lee.2001}, \cite{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. Für diesen Fall lässt sich bei Kenntnis des Druckverlaufs die Trapping Number über die Sanierung berechnen. Bei Eintritt von Mobilisation erreicht diese einen kritischen Wert. Über die Trappingnumber auf den NAPL-Austrag zurückgerechnet, lässt sich durch Variation eines eingehenden und Konstanthalten aller anderen Parameter, der Strömungsverlauf bei sich ändernden Randbedingungen darstellen, siehe Abschnitt \ref{nt}. + + +\section{Phasenverhalten in der S"aule} + +%Säule $52$. Hier war nach Start der Sanierung ein Problem aufgetreten, so dass der Fluss mehrere Stunden unterbrochen wurde. Diese führte zu einer teilweisen Mobilisation. Nach wieder anfahren des Versuchs bildeten sich zwei Fronten. %Zufrühes Umschalten Säule 30 %Analytik Säulen 51 52 53 @@ -53,15 +61,5 @@ - -\subsection{Druck} - -%Kolmation, siehe LUBW_Kehl -Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen (vgl. \cite{Lee.2001}, \cite{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Leztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. - - - -\section{Phasenverhalten in der S"aule} - -Abhängig von der homogennität der Sandpackung konnte während des Aufsättigen der Säulen mit CS$_2$ das anlegen von Schichten ("layering", vgl Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes rießeln des Sandes, beispielsweise, wenn dieser feucht ist, das Fallrohr nicht gleichmäßig schwingt oder schief eingebaut ist. Durch das Layering ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.\bigskip +Abhängig von der Homogennität der Sandpackung konnte während des Aufsättigen der Säulen mit CS$_2$ das anlegen von Schichten ("layering", vgl Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes rießeln des Sandes, beispielsweise, wenn dieser feucht ist, das Fallrohr nicht gleichmäßig schwingt oder schief eingebaut ist. Durch das Layering ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.\bigskip Vor allem im Mittelsand trat eine andere Unregelmäßigkeit auf: der Einschluss von Luft (vgl. Abbildung \ref{pic:säulenprobs}). Luft in der Säule ist unerwünscht, da sie Poren blockiert. Dies führt dazu, dass sich feste Flusspfade ausbilden und daher nicht mehr alle Bereiche der Säule in gleichem Maße durchströmt werden. Die Lufteinschlüsse werden durch die veränderte Lichtbrechung am Säulenrand sichtbar. Es gibt mehrere Möglichkeiten, wie Luft in die Säule gelangen kann. Zum einen kann sie sich vor dem Wassersättigen bereits in der Säule befinden. Nämlich dann, wenn das vorangegangene CO$_2$-fluten nicht ausreichte oder die Säule vor dem Wassersättigen längere Zeit mit undichten Verschlüssen stand. Luft kann aber auch mit dem Fluid eingetragen werden. Zum beispiel durch nicht ausreichend entgastes Wasser oder eingasen in Leitungen und Verbindungen durch den Unterdruck der Strömung sowie Partialdruck der Luft. Werden Luftblasen erst nach dem Aufsättigen mit CS$_2$ festgestellt, ist es auch möglich, dass dieses aus der Lösung ausgegast ist. Aufgrund der hohen Flüchtigkeit der Substanz kann dies vor allem bei höheren Temperaturen vorkommen. @@ -78,11 +76,10 @@ \end{figure} -Finger wie in Abbildung \ref{fingering_mob} im der zweiten Säule von links zu sehen,treten auf wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff. Die beiden mit Feinsand gepackten Säulen wurden versehendlich zu stark angefärbt.Zum Zeitpunkt als das Foto entstand war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, wärend darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. +Finger wie in Abbildung \ref{fingering_mob} im der zweiten Säule von links zu sehen, treten auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff. Die beiden mit Feinsand gepackten Säulen wurden versehendlich zu stark angefärbt.Zum Zeitpunkt als das Foto entstand war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, wärend darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. Bei anderen Versuchen konnten keine derartig ausgeprägte Finger beobachtet werden. %Ergebnisse Grenzflächentest Tracer Im gleichen Bild in der Säule rechts ist zu sehen wie Phase absinkt, das heißt vertikal mobilisiert wird. Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und NAPL so klein wird, dass sich die beiden Phasen unabhängig ineinander bewegen können. Je nach dem welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der NAPL mit der Strömung als Bulkphase vor der Tensidlösung her oder aber sinkt nach unten ab. Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. -Mobilisierung trat vornehmlich im Mittelsand auf. Aufgrund der größeren Poren sind hier die Kapillarkräfte geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number} geben. Diese kann als kritische Größe ausgedrückt werden. Penell %Penell 1996 suchen -hat für Sand ähnlicher Strucktur wie der verwendete und einen DNAPL die kritische Trappingnumber bestimmt als $2*10^{-5}$ - $5*10^{-5}$. +Mobilisierung trat vornehmlich im Mittelsand auf. Aufgrund der größeren Poren sind hier die Kapillarkräfte geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number} geben. Diese kann als kritische Größe ausgedrückt werden. Penell \cite{Pennell.1996} hat in Sand ähnlicher Strucktur und Körnung für PCE die kritische Trappingnumber bestimmt als $2*10^{-5}$ - $5*10^{-5}$. % Trapping Number für den kritischen Bereich berechnen und gucken ob das so hinkommt!!! @@ -143,4 +140,5 @@ \subsection{Trapping Number} +\label{nt} Die Trapping Number beschreibt das Kräftegleichgewicht zwischen Kapillarkräften, die den NAPL in den Porenräumen festhalten, und den viskosen und Gravitationskräften, die den Weitertransport fördern. @@ -190,5 +188,6 @@ Da die Anteile der Wechselwirkungskräfte nicht bekannt sind, soll hier dennoch mit der Näherung von Antonow gerechnet werden. Zu bedenken ist, dass die berechnete Grenzflächenspannung größer sein dürfte, als die tatsächliche Grenzflächenspannung. -Mit dieser Berechnungsart wurden Grenzflächenminima um $3$ mN/m gefunden. +Mit dieser Berechnungsart wurden Grenzflächenminima um $3$ mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein da Mobilisierung beobachtet wurde, welche in der Regel erst bei Werten unter $1$ mN/m auftritt. +%Noch mal nachrecherchieren ab wann es standartmäßig zu Mobilisierung kommt. Nach Li (\cite{Li, 2007}) lässt sich aus der Trapping Number die Residualsättigung berechnen, wie in Gleichung\ref{eqn:Sn} dargestellt.