Index: /diplomarbeit/Kapitel_4.tex =================================================================== --- /diplomarbeit/Kapitel_4.tex (revision 201) +++ /diplomarbeit/Kapitel_4.tex (revision 202) @@ -25,14 +25,15 @@ \subsection{Konzentration CS$_2$} -Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei $240$-$270$ g/L im Feinsand und bei $160$-$210$ g/L im Mittelsand. Ein Einfluss der leicht variierten Tensidkonzentration von einem auf zwei Prozent auf die Gelöstkonzentration war nicht feststellbar. Im Feinsand erfolgte der Austrag zudem schneller. Bei Betrachtung der Masseaustragskurven, ist zu erkennen, dass sich die Kurve im Feinsand nach zweieinhalb Porenvolumen asymptotisch einem Endwert annähert. Dies geschieht im Mittelsand erst nach drei Porenvolumen. Beim ersten Säulenversuch (Säulen 29 und 30) erfolgte der Wechsel von Tensid auf Wasserspülung deutlich früher (zwei PV) als bei den weiteren Versuchen (vier bis fünf PV). Dies hatte im Feinsand keine Auswirkungen auf den Austrag%, da zum einen der Durchbruch der Tensidlösung bereits erfolgt war und bei der geringen Restsättigung die Dichte und Viskosität entsprechend niedrig lagen, so dass keine nennenswerte Durchmischung bzw. Verdünnung stattfand. -Im Mittelsand dagegen was die ausgetragene Masse deutlich geringer. -Die gefundene maximalen DNAPL-Konzentrationen lagen über denen der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weiniger als $50$g/L erreicht. Konzentrationen von $200$g DNAPL wurden erst mit $2,5\%$ Tensid erreicht. (Vgl. Kapitel \ref{Ergebnisse Batch}) +Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei $240$-$270$ g/L im Feinsand und bei $160$-$210$ g/L im Mittelsand. Ein Einfluss der leicht variierten Tensidkonzentration von einem auf zwei Prozent auf die Gelöstkonzentration war nicht feststellbar. Im Feinsand erfolgte der Austrag schneller. Bei Betrachtung der Masseaustragskurven ist zu erkennen, dass sich die Kurve im Feinsand nach zweieinhalb Porenvolumen asymptotisch einem Endwert annähert. Dies geschieht im Mittelsand erst nach drei Porenvolumen. Beim ersten Säulenversuch (Säulen 29 und 30) erfolgte der Wechsel von Tensid auf Wasserspülung deutlich früher (zwei PV) als bei den weiteren Versuchen (vier bis fünf PV). Dies hatte im Feinsand keine Auswirkungen auf den Austrag +Im Mittelsand dagegen war die ausgetragene Masse deutlich geringer.\\ +%Wie wirkt sich die unterschiedliche Initialsättigung auf den Masseaustrag aus, wie wahrscheinlich stimmen die Inis??? Haut das tatsächlich hin mit dem V_w=V_cs2??? Differenzen durch inhomogenitäten und luft in der Säule berücksichtigen +Die gefundene maximalen DNAPL-Konzentrationen lagen über denen der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weiniger als $50$g/L erreicht. Konzentrationen von $200$g DNAPL wurden erst mit $2,5\%$ Tensid erreicht. (Vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}) Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei einzelnen früheren Bachversuchen beobachteter Effekt aufgetreten sein: hier hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. -Eine weitere mögliche Erklärung ist die Stabilisierung durch Feststoffpartikel (Pickering-Emulsion vgl. Kapitel \ref{Einfuehrung Batch}). -Eine andere Möglichkeit ist die bessere Angreifbarkeit des feinverteilten DNAPLs. Feldversuche zur PAK-Sanierung der Landesanstalt für Umweltschutz Baden-Württemberg haben gezeigt, dass sich dispers verteilte kleine DNAPL-Tröpfchen gut mittels Tensidspülung sanieren lassen, nicht aber größere Plops oder Pools. \cite{LUBW.2001} Dieser Fall wäre denkbar unter der Annahme, dass die Dispersion, die durch das Verschütteln der Batchansätze entsteht nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Wobei eine vollständige Entmischung der Batchansätze nicht beobachtet werden konnte. +Eine weitere mögliche Erklärung ist die Stabilisierung durch Feststoffpartikel (Pickering-Emulsion vgl. Kapitel Batchversuche \ref{Einfuehrung Batch}). +Eine andere Möglichkeit ist die bessere Angreifbarkeit des feinverteilten DNAPLs. Feldversuche zur PAK-Sanierung der Landesanstalt für Umweltschutz Baden-Württemberg haben gezeigt, dass sich dispers verteilte kleine DNAPL-Tröpfchen gut mittels Tensidspülung sanieren lassen, nicht aber größere Plops oder Pools. \cite{LUBW.2001} Dieser Fall wäre denkbar unter der Annahme, dass die Dispersion, die durch das Verschütteln der Batchansätze entsteht nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Eine vollständige Entmischung der Batchansätze nicht beobachtet werden konnte. \subsection{Wiederfindungsrate} -Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt zum einen die steilere Kurve in den Graphen, zum anderen war Durchbruch der Emulsion auch optisch früher zu beobachten. Wobei das aufquellen des Tensids zu beginn der Sanierung im Mittelsand stärker ausgeprägt war. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. +Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollstandig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. @@ -49,5 +50,4 @@ \subsection{Druck} -%Kolmation, siehe LUBW_Kehl Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen (vgl. \cite{Lee.2001}, \cite{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. Für diesen Fall lässt sich bei Kenntnis des Druckverlaufs die Trapping Number über die Sanierung berechnen. Bei Eintritt von Mobilisation erreicht diese einen kritischen Wert. Über die Trappingnumber auf den NAPL-Austrag zurückgerechnet, lässt sich durch Variation eines eingehenden und Konstanthalten aller anderen Parameter, der Strömungsverlauf bei sich ändernden Randbedingungen darstellen, siehe Abschnitt \ref{nt}. @@ -79,4 +79,5 @@ Bei anderen Versuchen konnten keine derartig ausgeprägte Finger beobachtet werden. %Ergebnisse Grenzflächentest Tracer +%Die Messung der Grenzflächenspannung mittels Tropfenvolumentensiometer zwischen unterschiedlich stark angefärbtem CS$_2$ und Wasser ergaben einen deutlichen Einfluss des Farbstoffes. Im gleichen Bild in der Säule rechts ist zu sehen wie Phase absinkt, das heißt vertikal mobilisiert wird. Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und NAPL so klein wird, dass sich die beiden Phasen unabhängig ineinander bewegen können. Je nach dem welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der NAPL mit der Strömung als Bulkphase vor der Tensidlösung her oder aber sinkt nach unten ab. Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch.