Index: /diplomarbeit/Kapitel_4.tex =================================================================== --- /diplomarbeit/Kapitel_4.tex (revision 203) +++ /diplomarbeit/Kapitel_4.tex (revision 204) @@ -103,34 +103,16 @@ \subsection{Konzentration CS$_2$} + +Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben von Säule 31. + +\begin{figure} +\includegraphics[width=\textwidth]{col31} +\caption{Abgefüllte Proben von Säule $31$} +\label{pic:abgefuellt} +\end{figure} + Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei $240$-$270$ g/L im Feinsand und bei $160$-$210$ g/L im Mittelsand. Ein Einfluss der leicht variierten Tensidkonzentration von einem auf zwei Prozent auf die Gelöstkonzentration war nicht feststellbar. Im Feinsand erfolgte der Austrag schneller. Bei Betrachtung der Masseaustragskurven ist zu erkennen, dass sich die Kurve im Feinsand nach zweieinhalb Porenvolumen asymptotisch einem Endwert annähert. Dies geschieht im Mittelsand erst nach drei Porenvolumen. Beim ersten Säulenversuch (Säulen 29 und 30) erfolgte der Wechsel von Tensid auf Wasserspülung deutlich früher (zwei PV) als bei den weiteren Versuchen (vier bis fünf PV). Dies hatte im Feinsand keine Auswirkungen auf den Austrag Im Mittelsand dagegen war die ausgetragene Masse deutlich geringer.\\ - - -\subsection{Wiederfindungsrate} - -Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollstandig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. - - -\subsection{Dichte} - -Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen. Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei $1,08$ g/ml für Feinsand und $0,6$ g/ml im Mittelsand. - - -\subsection{Oberfl"achenspannung} - -Da die erst Probe bei allen Versuchen bereits nach $0,7$ Porenvolumen genommen worden war, sollte der erste Messwert in etwa der Oberflächenspannung von Wasser entsprechen. Das war jedoch nicht bei allen Proben der Fall. Da das Tensid bei auftreffen auf den DNAPL zu quellen began, war teils schon in den ersten Proben Tensid enthalten und damit die Oberflächenspannnung reduziert. Nach einem Porenvolumen war die Oberflächenspannung auf das Minimum von $35$ mN/m abgesunken und blieb dort stabil. Nach dem Nachspülen von einem Porenvolumen Wasser stieg die Oberflächenspannung wieder auf das Ausgangsniveau an. Am Verlauf der Oberflächenspannung lässt sich dehr deutlich das frühe Umschalten auf Wasser bei den Säulen $29$ und $30$ deutlich erkennen. Bei Säule $30$ steigt die Oberflächenspannung nach dem Umschalten rasch an. Bei Säule $29$ gibt es einen langsamen ungleichmäßigen Anstieg, was für eine langsame Verdünnung des Tensids spricht. - - -\subsection{Druck} - -Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Dieser fällt jedoch schnell wieder ab, mit der Abnahme des Anteils an gelöstem CS$_2$. -Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen (vgl. \cite{Lee.2001}, \cite{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. - - - - -\section{Bewertung und Vergleich} - -%Wie wirkt sich die unterschiedliche Initialsättigung auf den Masseaustrag aus, wie wahrscheinlich stimmen die Inis??? Haut das tatsächlich hin mit dem V_w=V_cs2??? Differenzen durch inhomogenitäten und luft in der Säule berücksichtigen +%Wie wirkt sich die unterschiedliche Initialsättigung auf den Masseaustrag aus, wie wahrscheinlich stimmen die Inis??? Haut das tatsächlich hin mit dem V_w=V_cs2??? Differenzen durch Inhomogenitäten und luft in der Säule berücksichtigen Die gefundene maximalen DNAPL-Konzentrationen lagen über denen der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weiniger als $50$g/L erreicht. Konzentrationen von $200$g DNAPL wurden erst mit $2,5\%$ Tensid erreicht. (Vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}) Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei einzelnen früheren Bachversuchen beobachteter Effekt aufgetreten sein: hier hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. @@ -138,4 +120,29 @@ Eine andere Möglichkeit ist die bessere Angreifbarkeit des feinverteilten DNAPLs. Feldversuche zur PAK-Sanierung der Landesanstalt für Umweltschutz Baden-Württemberg haben gezeigt, dass sich dispers verteilte kleine DNAPL-Tröpfchen gut mittels Tensidspülung sanieren lassen, nicht aber größere Plops oder Pools. \cite{LUBW.2001} Dieser Fall wäre denkbar unter der Annahme, dass die Dispersion, die durch das Verschütteln der Batchansätze entsteht nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Eine vollständige Entmischung der Batchansätze nicht beobachtet werden konnte. + + +\subsection{Wiederfindungsrate} + +Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollstandig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem nach dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von $80$\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich $80$\% Wiederfindung und für Mittelsand bei durchschnittlich $70$\% Wiederfindung. + + +\subsection{Dichte} + +Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen. Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei $1,08$ g/ml für Feinsand und $0,6$ g/ml im Mittelsand. + + +\subsection{Oberfl"achenspannung} + +Da die erst Probe bei allen Versuchen bereits nach $0,7$ Porenvolumen genommen worden war, sollte der erste Messwert in etwa der Oberflächenspannung von Wasser entsprechen. Das war jedoch nicht bei allen Proben der Fall. Da das Tensid bei auftreffen auf den DNAPL zu quellen began, war teils schon in den ersten Proben Tensid enthalten und damit die Oberflächenspannnung reduziert. Nach einem Porenvolumen war die Oberflächenspannung auf das Minimum von $35$ mN/m abgesunken und blieb dort stabil. Nach dem Nachspülen von einem Porenvolumen Wasser stieg die Oberflächenspannung wieder auf das Ausgangsniveau an. Am Verlauf der Oberflächenspannung lässt sich dehr deutlich das frühe Umschalten auf Wasser bei den Säulen $29$ und $30$ deutlich erkennen. Bei Säule $30$ steigt die Oberflächenspannung nach dem Umschalten rasch an. Bei Säule $29$ gibt es einen langsamen ungleichmäßigen Anstieg, was für eine langsame Verdünnung des Tensids spricht. + + +\subsection{Druck} + +Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen (vgl. \cite{Lee.2001}, \cite{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. + +Aufgrund von Problemen bei der Kalibrierung der Druckaufnehmer liegen nur für einen Teil der Versuche Druckwerte vor, welche durch unterschiedliche Kalibrierung auch nicht unmittelbar zu vergleichen sind. +Bezugsgröße muss der Relativdruck sein, der sich bei Wasserspülung vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. +Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit der dem Austrag der Emulsion aus der Säule, da die Viskosität der nachlaufenden Tendsidlösung gegenüber Wasser nicht rellevant erhöht ist. +% Grafiken pd10, pd12; bei pd9 sieht man eig nix?! Aber 10 und 12 sind au hässlich...