Changeset 208 for diplomarbeit/Kapitel_2.tex
- Timestamp:
- 07/05/12 16:23:39 (12 years ago)
- Files:
-
- diplomarbeit/Kapitel_2.tex (modified) (5 diffs)
Legend:
- Unmodified
- Added
- Removed
- Modified
- Copied
- Moved
diplomarbeit/Kapitel_2.tex
r207 r208 9 9 Die leichte Phase war eine milchig weiße Lösung, wie auch in früheren Versuchen. Ab einer Konzentration von 0,5\% Tensid bildete sich zudem eine milchige rosa gefärbte Mittelphase. Bei fast allen Proben konnte aber ein kleiner Rest Schwerphase nicht solubilisiert werden. 10 10 11 Die Vermischung setzte selbst bei sehr niedrigen Konzentrationen unmittelbar nach zusammengeben der Phasen ein und das Phasengleichgewicht stellte sich nach einmaligem Verschütteln bereits nach 2-3 Stunden ein. Die Phasenzusammensetzung blieb bei 20 11 Die Vermischung setzte selbst bei sehr niedrigen Konzentrationen unmittelbar nach zusammengeben der Phasen ein und das Phasengleichgewicht stellte sich nach einmaligem Verschütteln bereits nach 2-3 Stunden ein. Die Phasenzusammensetzung blieb bei 20°C zwei Wochen lang stabil. Erst im Kühlraum bei 8°C war ein leichtes Absetzen zu beobachten. 12 12 13 Die niedrigst konzentrierten Proben mit 0,25-0,3\% Tensid wurden ebenso wie die höher konzentrierten Proben milchig. Die Trübung wird durch die sich bildenden Mizellen verursacht, die die Lichtbrechung der Lösung verstärken. Das heißt also, dass die CMC hier bereits überschritten wurde. Die CMC liegt mit $< 0,25\%$sehr niedrig.13 Die niedrigst konzentrierten Proben mit 0,25-0,3\% Tensid wurden ebenso wie die höher konzentrierten Proben milchig. Die Trübung wird durch die sich bildenden Mizellen verursacht, die die Lichtbrechung der Lösung verstärken. Das heißt also, dass die CMC hier bereits überschritten wurde. Die CMC liegt mit $<$0,25\% sehr niedrig. 14 14 15 15 %hab ich da keine Bilder gemacht??? Dann evtl in den Vergleichsteil nen Bild von den alten Versuchen reinhängen... … … 26 26 27 27 Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen 15g/l und 50g/l. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm. 28 29 28 Dieses wird berechnet, indem die Masse an gelöster Schwerphase auf die Masse an Tensid bezogen wird: $S=m_{CDS}/m_{Surfactant}$. Im betrachteten Konzentrationsbereich fällt das Solubilisierungspotential bei Zugabe von Tensid zunächst deutlich und bei weiterer Tensidzugaben geringer ab. Der Verlauf lässt sich mit der Mizellbildung erklären. So lagern sich zunächst Tensidmoleküle an die Grenzfläche an, senken die Grenzflächenspannung und verbessern die Solubilisierung sehr rasch. Dieser Effekt wird bereits durch kleinste Mengen eines Emulgators erreicht. Bei erreichen der CMC ändert sich die Grenzflächenspannung nicht mehr und eine weitere Solubilisierung wird nur noch durch die Einlagerung in Mizellen erreicht. Da in einer Mizelle die DNAPL-Moleküle nicht nur angelagert, sondern komplett von Tensidmolekülen umschlossen werden, sind hier mehr Tensidmoleküle notwendig. Der Verbrauch an Tensid steigt im Verhältnis zur gelösten Schwerphase. 30 29 31 30 Die gemessene Oberflächenspannung fällt zunächst steil ab um dann auf einem konstanten Niveau zu bleiben. Sie lag für die Kontrollproben ohne Tensid bei 65mN/m, für alle anderen Proben bei 40mN/m. %Dies erklärt sich so, dass bei erreichen der CMC sämtliche Grenzflächen mit Tensidmolekülen besetzt sind und sich die Tensidmoleküle in den thermodynamisch nächstgünstigsten Zustand begeben. Sie lagern sich im inneren des Lösemittels zu Mizellen zusammen. Die Grenzflächen bleiben unverändert, also bleibt die Grenz-/ bzw Oberflächenspannung konstant mit erreichen der CMC. 32 Wie beschrieben ist dies ein Effekt der bei Überschreiten der CMC auftritt. Die Differenz der Oberflächenspannung der Kontrollproben zur Oberflächenspannung von Wasser (72,5mN/m) wird verursacht durch die geringen Menge an gelöstem CS$_2$. Dieses löst sich in reinem Wasser zu 2 31 Wie beschrieben ist dies ein Effekt der bei Überschreiten der CMC auftritt. Die Differenz der Oberflächenspannung der Kontrollproben zur Oberflächenspannung von Wasser (72,5mN/m) wird verursacht durch die geringen Menge an gelöstem CS$_2$. Dieses löst sich in reinem Wasser zu 2g/L. Wobei die Löslichkeit durch das bivalente Salz Calciumchlorid leicht erhöht sein kann. 33 32 34 Die Dichte war für alle Proben nur gering erhöht mit 1,02 bis 1,03 g/ml, wobei eine steigende Dichte mit steigender Tensid- und damit auch CS$_2$-Konzentration zu verzeichnen war. Ebenso verhielt es dich mit der Viskosität, die mit steigender Tensidkonzentration anstieg und ihr Maximum bei 1,6m$^{2}$/s erreichte.33 Die Dichte war für alle Proben nur gering erhöht mit 1,02-1,03g/ml, wobei eine steigende Dichte mit steigender Tensid- und damit auch CS$_2$-Konzentration zu verzeichnen war. Ebenso verhielt es dich mit der Viskosität, die mit steigender Tensidkonzentration anstieg und ihr Maximum bei 1,6m$^{2}$/s erreichte. 35 34 36 35 … … 56 55 \end{figure} 57 56 58 Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund 5\%. Das maximale Solubilisierungspotential wurde ebenfalls bei 5\% Tensid erreicht. Allerdings stieg die Viskosität ab 3\% Tensid an und überschritt bei 5\% Tensid bereits 5 m$^{2}$/s. Oberhalb von 5 \% Tensid stieg die Viskosität stark an, auf Werte über 40m$^{2}$/s. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kapillardurchmesser 20$µ$m ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare zurückdrücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet. Sie dürften aber dennoch sehr hoch liegen.57 Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund 5\%. Das maximale Solubilisierungspotential wurde ebenfalls bei 5\% Tensid erreicht. Allerdings stieg die Viskosität ab 3\% Tensid an und überschritt bei 5\% Tensid bereits 5m$^{2}$/s. Oberhalb von 5\% Tensid stieg die Viskosität stark an, auf Werte über 40m$^{2}$/s. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kapillardurchmesser 20$µ$m ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare zurückdrücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet. Sie dürften aber dennoch sehr hoch liegen. 59 58 60 Die Oberflächenspannung lag für alle Tensid enthaltenden Proben konstant bei 35 mN/m, nur die Referenzproben ohne Tensid lagen über 60mN/m. Das entspricht etwa den Messwerten aus der CMC-Reihe.59 Die Oberflächenspannung lag für alle Tensid enthaltenden Proben konstant bei \mbox{35mN/m}, nur die Referenzproben ohne Tensid lagen über 60mN/m. Das entspricht etwa den Messwerten aus der CMC-Reihe. 61 60 62 Die Dichte stieg ab einer Tensidkonzentration von 2 \% an, bis auf Werte von 1,1g/L. Die Dichte und damit auch die Masse an gelöster Schwerphase war also deutlich erhöht.61 Die Dichte stieg ab einer Tensidkonzentration von 2\% an, bis auf Werte von 1,1g/L. Die Dichte und damit auch die Masse an gelöster Schwerphase war also deutlich erhöht. 63 62 64 63 … … 67 66 %wie sich eine Erhöhung der Tensidkonzentration auf das Gesamtsystem auswirkt. Es sollte eine Aussage über die Tensidkonzentration mit der besten Solubilisierungsrate (Masse geöster DNAPL / Masse eingesetztes Tensid) gemacht werden, sowie der Anstieg der Viskosität kritisch betrachtet werden. 68 67 69 Das optimale Solubilisierungspotential liegt den Messwerten nach bei 2 - 5 \% Tensid. Allerdings ist hier auch die Dichte und die Viskosität bereits stark erhöht. Durch die erhöhte Dichte kann die vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da bei höheren Vikositäten das Fließverhalten verändert wird. Die Vorhersage des Verhaltens der Emulsion im Boden bei induziertem Fluss wird schlechter vorhersagbar. % genauer, mehr68 Das optimale Solubilisierungspotential liegt den Messwerten nach bei 2-5\% Tensid. Allerdings ist hier auch die Dichte und die Viskosität bereits stark erhöht. Durch die erhöhte Dichte kann die vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da der Druck ansteigt. Die Vorhersage des Verhaltens der Emulsion im Boden bei induziertem Fluss wird schlechter vorhersagbar. % genauer, mehr 70 69 71 70 … … 73 72 \section{Vergleich der bisherigen Ergebnisse} 74 73 75 In Abbildung \ref{pic:batch_med} sind die Messwerte der im Rahmen der Arbeit durchgeführten Versuche dargestellt und werden verglichen mit dem Mittelwerten aus allen durchgeführten Versuchen, also den Werten aus früheren Versuchen und den Werten aus den hier beschriebenen Versuchen. Die getroffenen Aussagen können hier nochmal verbessert werden, durch die größere Anzahl an betrachteten Messpunkten. Bei betrachten des Solubilisierungspotentials wird deutlich, dass die Effktivität zunächst stark abnimmt. Ab einer Tensidkonzentration von einem Prozent verändert sich das Splubilisierungspotential nur noch langsam. Die Konzentration an gelöstem CS$_2$ steigt bis zu einer Tensidkonzentration von $2,25$ 74 In Abbildung \ref{pic:batch_med} sind die Messwerte der im Rahmen der Arbeit durchgeführten Versuche dargestellt und werden verglichen mit dem Mittelwerten aus allen durchgeführten Versuchen, also den Werten aus früheren Versuchen und den Werten aus den hier beschriebenen Versuchen. Die getroffenen Aussagen können hier nochmal verbessert werden, durch die größere Anzahl an betrachteten Messpunkten. Bei betrachten des Solubilisierungspotentials wird deutlich, dass die Effktivität zunächst stark abnimmt. Ab einer Tensidkonzentration von einem Prozent verändert sich das Splubilisierungspotential nur noch langsam. Die Konzentration an gelöstem CS$_2$ steigt bis zu einer Tensidkonzentration von $2,25$\% stark an. Bei höheren Tensidkonzentrationen verändert sich Konzentration an gelöstem DNAPL nicht mehr. Diese beiden Betrachtungen gemeinsam zeigen, dass mehr als zwei Prozent Tensid keinen weiteren positiven Nutzen haben. Im Gegenteil: Durch die gleichzeitig erhöhte Dichte der leichten Phase steigt die Gefahr von Mobilisierung, bei über fünf Prozent Tensid erhöht sich zudem die Viskosität stark. 76 75 77 76 \begin{figure}