Changeset 212 for diplomarbeit/Kapitel_4.tex
- Timestamp:
- 07/12/12 17:43:54 (12 years ago)
- Files:
-
- diplomarbeit/Kapitel_4.tex (modified) (12 diffs)
Legend:
- Unmodified
- Added
- Removed
- Modified
- Copied
- Moved
diplomarbeit/Kapitel_4.tex
r211 r212 28 28 29 29 30 Finger, wie in Abbildung \ref{fingering_mob} in der zweiten Säule von links ( $32$) zu sehen, treten auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt wurden. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund $80$\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt.30 Finger, wie in Abbildung \ref{fingering_mob} in der zweiten Säule von links (Nr. 32) zu sehen, treten auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt wurden. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund 80\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. 31 31 Bei anderen Versuchen, mit deutlich geringer Tracerkonzentration, konnten keine derartig ausgeprägten Finger im Feinsand beobachtet werden. Im Mittelsand wurden bei einzelnen Säulen vergleichbare Beobachtungen gemacht, wobei die Unregelmäßigkeit immer im Zusammenhang mit Mobilisation auftrat. Da die Beobachtung stets nur bei einer von zwei parallel betriebenen Säulen gemacht wurde, wird dies nicht durch Fließrate oder Tensidkonzentration verursacht. Wahrscheinlicher ist, dass eine unregelmäßige Packung und Lufteinschlüsse in der Säule ursächlich waren. 32 32 %Ergebnisse Grenzflächentest Tracer … … 40 40 \end{figure} 41 41 42 In Abbildung \ref{fingering_mob} ist außerdem in der Säule rechts ( $34$) zu sehen, wie die Emulsion absinkt, das heißt, vertikal mobilisiert wird.42 In Abbildung \ref{fingering_mob} ist außerdem in der Säule rechts (34) zu sehen, wie die Emulsion absinkt, das heißt, vertikal mobilisiert wird. 43 43 Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und NAPL so klein wird, dass sich die beiden Phasen unabhängig ineinander bewegen können. Je nach dem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase mit der Strömung, oder aber er sinkt nach unten ab. % Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. 44 Mobilisierung trat im Mittelsand bei einigen Säulen auf. Im Feinsand wurde sie nur bei einer Säule ( $52$) beobachtet, als der Fluss vorübergehend unterbrochen war. Aufgrund der größeren Poren sind die Kapillarkräfte im Mittelsand geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number}) geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder Grenzflächenspannung, das Mobilisationsrisiko zu minimieren. Siehe hierzu Kapitel \ref{nt}\\44 Mobilisierung trat im Mittelsand bei einigen Säulen auf. Im Feinsand wurde sie nur bei einer Säule (52) beobachtet, als der Fluss vorübergehend unterbrochen war. Aufgrund der größeren Poren sind die Kapillarkräfte im Mittelsand geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number}) geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder Grenzflächenspannung, das Mobilisationsrisiko zu minimieren. Siehe hierzu Kapitel \ref{nt}\\ 45 45 46 46 \begin{figure} … … 81 81 \begin{figure} 82 82 \includegraphics{120620_col7+8} 83 \caption{Säulenversuche bei $2$\% Tensid und einer Fließrate von $1$ml/min}83 \caption{Säulenversuche bei 2\% Tensid und einer Fließrate von 1 ml/min} 84 84 \label{7+8} 85 85 \end{figure} … … 87 87 \begin{figure} 88 88 \includegraphics{120605_col9} 89 \caption{Säulenversuche bei $1$\% Tensid und einer Fließrate von $1$ml/min}89 \caption{Säulenversuche bei 1\% Tensid und einer Fließrate von 1 ml/min} 90 90 \label{9} 91 91 \end{figure} … … 93 93 \begin{figure} 94 94 \includegraphics{120605_col10+12} 95 \caption{Säulenversuche bei $1$\% Tensid und einer Fließrate von $0,5$ml/min}95 \caption{Säulenversuche bei 1\% Tensid und einer Fließrate von 0,5 ml/min} 96 96 \label{10+12} 97 97 \end{figure} … … 100 100 101 101 102 Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen 29-34) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid zur Sanierung verwendet und eine Fließrate von 1 ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen 35-38), der mit einer Fließrate von ebenfalls 1ml/min, aber mit einer nur einprozentigen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von 0,5ml/min durchgeführt wurden.102 Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen 29-34) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid zur Sanierung verwendet und eine Fließrate von 1 ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen 35-38), der mit einer Fließrate von ebenfalls 1 ml/min, aber mit einer nur einprozentigen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von 0,5 ml/min durchgeführt wurden. 103 103 104 104 … … 114 114 \subsubsection{Konzentration CS$_2$} 115 115 116 Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben von Säule 35. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26 g/L und 7g/L). Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ sind hier nicht mehr wesentlich erhöht (für die abgebildete Reihe 2g/L). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6g/L).116 Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben von Säule 35. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26 g/L und 7 g/L). Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ sind hier nicht mehr wesentlich erhöht (für die abgebildete Reihe 2 g/L). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6 g/L). 117 117 118 118 119 119 \begin{figure} 120 120 \includegraphics[width=\textwidth]{col35} 121 \caption{Abgefüllte Proben vo n Säule $35$}121 \caption{Abgefüllte Proben vom Versuch in Feinsand bei 1\% Tensid und einer Fließrate von 1 ml/min} 122 122 \label{pic:abgefuellt} 123 123 \end{figure} 124 124 125 Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei $240$-$270$g/L im Feinsand und bei $160$-$210$g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von einem auf zwei Prozent führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1ml/min (Abbildung \ref{7+8}) und im Mittelsand bei 1\% und 0,5ml/min (Abbildung \ref{10+12}) gefunden.125 Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von einem auf zwei Prozent führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1 ml/min (Abbildung \ref{7+8}) und im Mittelsand bei 1\% und 0,5 ml/min (Abbildung \ref{10+12}) gefunden. 126 126 127 127 … … 129 129 Im Mittelsand dagegen war die ausgetragene Masse deutlich geringer.\\ 130 130 %Wie wirkt sich die unterschiedliche Initialsättigung auf den Masseaustrag aus, wie wahrscheinlich stimmen die Inis??? Haut das tatsächlich hin mit dem V_w=V_cs2??? Differenzen durch Inhomogenitäten und luft in der Säule berücksichtigen 131 Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als $50$g/L erreicht. Konzentrationen von $200$g DNAPL wurden erst mit $2,5\%$Tensid erreicht (vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}).131 Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als 50 g/L erreicht. Konzentrationen von 200 g DNAPL wurden erst mit 2,5\% Tensid erreicht (vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}). 132 132 Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei einzelnen früheren Bachversuchen beobachteter Effekt aufgetreten sein: Dort hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. 133 133 Eine weitere mögliche Erklärung ist die Stabilisierung durch Feststoffpartikel (Pickering-Emulsion vgl. Batchversuche Kapitel \ref{Einfuehrung Batch}). … … 136 136 137 137 138 \subsection{Wiederfindung srate}138 \subsection{Wiederfindung} 139 139 140 Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_ {2}$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsratevon 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung.140 Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_2$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Wiederfindung von 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung. 141 141 142 142 143 143 \subsection{Dichte} 144 144 145 Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen. Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei 1,08 g/ml für Feinsand und 0,6g/ml im Mittelsand.145 Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen. Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei 1,08 g/ml für Feinsand und 0, 6 g/ml im Mittelsand. 146 146 147 147 … … 156 156 157 157 Aufgrund von Problemen bei der Kalibrierung der Druckaufnehmer liegen nur für einen Teil der Versuche Druckwerte vor, welche durch unterschiedliche Kalibrierung auch nicht unmittelbar zu vergleichen sind. 158 Bezugsgröße muss der Relativdruck sein, der sich bei Wasserspülung vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. %Das sollt ich vielleicht noch ausprobieren, hab ich da Druckwerte für Wasser??? Nein, für Col10 nur Wasser nach Sanierung...159 Für die beiden letzten Versuche sind Druckverlauf und daraus errechnete Permeabilität in den Abbildungen \ref{pic:pd10} und \ref{pic:pd12} grafisch dargestellt. 160 Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Ten dsidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an.158 Bezugsgröße muss der Differenzdruck sein, der sich bei Wasserspülung vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. %Das sollt ich vielleicht noch ausprobieren, hab ich da Druckwerte für Wasser??? Nein, für Col10 nur Wasser nach Sanierung... 159 Für die beiden letzten Versuche sind Druckverlauf und daraus errechnete Permeabilität in den Abbildungen \ref{pic:pd10} und \ref{pic:pd12} grafisch dargestellt. 160 Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Tensidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an. Der gemessene Differenzdruck bei Säule 46 (siehe Abbildung \ref{pic:pd10} blieb über die gesamte Sanierungsdauer konstant. Hier liegt ein Messfehler vor, vermutlich verursacht durch Luftblasen in den Druckleitungen, sodas eine sinnvolle Auswertung nicht möglich ist. 161 161 162 162 163 163 \begin{figure} 164 164 \centering 165 \includegraphics[scale= 0.9]{col10_pd}166 \caption{Verlauf von Relativdruck und Permeabilität über dieSanierung der Säulen 43 bis 45}165 \includegraphics[scale=1]{col10_pd} 166 \caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 43 bis 45} 167 167 \label{pic:pd10} 168 168 \end{figure} … … 170 170 \begin{figure} 171 171 \centering 172 \includegraphics[scale= 0.9]{col12_pd}173 \caption{Verlauf von Relativdruck und Permeabilität über dieSanierung der Säulen 51 bis 54}172 \includegraphics[scale=1]{col12_pd} 173 \caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 51 bis 54} 174 174 \label{pic:pd12} 175 175 \end{figure} … … 179 179 180 180 Für die Berechnung der Trapping Number stellte sich das Problem, dass die Grenzflächenspannung nicht mittels eines Tropfenvolumentensiometers messbar war. Die Abschätzung nach Antonow über die Oberflächenspannung der leichten Phase und des reinem Schwefelkohlenstoffs erwies sich als unzureichend, da die so bestimmten Werte deutlich zu hoch lagen. 181 Mit dieser Berechnungsart wurden Grenzflächenminima von $3$mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein, da Mobilisierung beobachtet wurde, welche in der Regel erst bei deutlich kleineren Werten auftritt.181 Mit dieser Berechnungsart wurden Grenzflächenminima von 3 mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein, da Mobilisierung beobachtet wurde, welche in der Regel erst bei deutlich kleineren Werten auftritt. 182 182 %Noch mal nachrecherchieren ab wann es standartmäßig zu Mobilisierung kommt. childs findet 3,92mN/m groß. 183 183