Index: diplomarbeit/Batch.tex =================================================================== --- diplomarbeit/Batch.tex (revision 212) +++ diplomarbeit/Batch.tex (revision 212) @@ -0,0 +1,81 @@ +\chapter{Durchführung der Batchversuche} +\label{Batch} + + + +\section{Eruierung der Ergebnisse aus vorangegangenen Versuchen} + +Im Vorfeld dieser Arbeit wurden bereits Batchversuche durchgeführt. Mittels dieser wurde das Tensid Brij 97 wegen seiner sehr guten Solubilisierungseigenschaften für den vorliegenden DNAPL und der geringen Querempfindlichkeit gegen Fremdionen aus fünfzehn getesteten anionischen und nichtionische Tensiden ausgewählt. Um die dort bestimmten Messergebnisse abzusichern und zu erweitern, wurden zwei weitere Batchreihen mit dem ausgewählten Tensid durchgeführt. Hier ging es nun zum einen darum, eine großen Konzentrationsspanne zu untersuchen (vgl. Kapitel \ref{subsec:grosse}). Zum anderen wurde der Konzentrationsbereich rund um die kritische Mizellkonzentration (CMC) genauer betrachtet(vgl. Kapitel \ref{subsec:kleine}). Bei beiden Messreihen wurde eine Dreifachbestimmung durchgeführt und die erhaltenen Messwerte mit denen aus den vorangegangenen Versuchen verglichen. + +\subsection{Vorgehen} + +Die Chemikalien wurden in 15 ml-Vials mit Septum und Mininert-Ventilen gemischt. Diese Ventile wurden nur geöffnet um Flüssigkeit zuzugeben bzw. zu entnehmen. Die Zugabe des DNAPLs, sowie die Probenahme, erfolgte mit einer gasdichten Spritze. +Um einen Druckausgleich während des Flüssigkeitstransfers zu ermöglichen wurde das Vial mit einer zweiten, feinen Nadel belüftet. Bei dieser war die Spitze zuvor mit einem Schleifstein abgerundet worden, um sowohl eine Beschädigung des Ventils, als auch das Verstopfen der Nadel zu verhindern. + +Aus Tensid und Wasser wurde zunächst eine Stammlösung hergestellt. Das Tensid wurde in eine Glasflasche eingewogen und mit Wasser aufgefüllt. Alle Massen wurden durch wiegen erfasst, so dass der tatsächliche Masseanteil an Tensid in der Lösung bestimmt werden konnte. Zudem wurde die Dichte der Tensidlösung bestimmt. Der DNAPL wurde in den Vials vorgelegt und über die Ventile die Tensidstammlösung und Wasser mittels Spritze zugegeben. Dazu war eine Umrechnung zwischen gewünschten Massenanteilen und den entsprechenden Volumenzugaben der einzelnen Komponenten erforderlich, weshalb die Dichte der Tensidlösung, des Wassers und des DNAPLs benötigt wurden. + +Die Mischungen wurden eine Woche lang in ein auf 20°C Temperiertes Wasserbad gestellt. Nach 24 und nach 48 Stunden wurden die Vials nochmals geschüttelt. Danach wurden sie bis zur Probenahme ruhen gelassen. + +Für die Analytik wurde aus der leichten Phase Probe entnommen und in zwei Schritten auf das Verhältnis 1/100 in Methanol verdünnt. Die Bestimmung der Konzentration an gelöstem CS$_2$ erfolgte mittels HPLC mit UV/VIS-Detektor bei einer Wellenlänge von 315 nm. + +Die Dichte der Proben wurde bestimmt durch wiegen eines definierten Probevolumens. Hierzu wurde mit einer gasdichten +Glasspritze ein Volumen von 2,5 ml Probe abgenommen und auf einer Analysenwaage die +Masse mit einer Genauigkeit von 0,1 mg bestimmt. + + +Die Oberflächenspannung der Proben wurde mit einem Blasendrucktensiometer (\mbox{BPA-1P}, Sinterface) gemessen. +Die Messung erfolgte im "fast scan mode" des Gerätes. Dadurch dauert die Messung einer Probe nur fünf bis zehn Minuten. + +Mit einem Mikro-Ubbelohdeviskosimeter wurde die kinematische Viskosität bestimmt. Dabei wurden für die Batchreihe bei der, aufgrund der hohen Tensidkonzentrationen, mit einer hohen Viskosität zu rechnen war ein Viskosimeter mit einer Kapillare von 20$µ$m Durchmesser verwendet. Für die Reihe mit niedrigen Tensidkonzentrationen wurde ein Viskosimeter +mit einem Kapillardurchmesser von 10 $µ$m genutzt, wodurch die Fließzeiten verlängert und somit die +Genauigkeit erhöht wurde. Beide Viskosimeter waren vorab mit destilliertem Wasser kalibriert worden. Über die +Multiplikation der so erhaltenen kinematischen Viskosität mit der Dichte konnte die dynamische Viskosität berechnet werden. Das Messverfahren ist streng genommen nur für newtonische Fluide geeignet, zu denen Tenside im allgemeinen nicht gezählt werden. Aufgrund der geringen Tensidkonzentrationen, wurde diese Eigenschaft dennoch für die Proben angenommen. + + + +\subsection{CMC-Konzentrationsreihe}\label{subsec:kleine} + +Die kritische Mizellkonzentration (CMC) zu kennen ist zur Herstelllung von Emulsionen von großer Bedeutung. Mit zunehmender Tensidkonzentration fällt die Grenzflächenspannung immer weiter ab. Mit Erreichen der CMC ändert sich die Grenzflächenspannung nicht mehr weiter, sondern bleibt konstant, während sich im Inneren der Lösung Mizellen ausbilden. Dies ist nun der Punkt an dem die Löslichkeit eines nicht wasserlöslichen Stoffes stark ansteigt, da dieser in die Mizellen eingelagert werden kann. +Aufgrund der vorangegangenen Versuche wurde die CMC im Bereich von 1-2\% Tensid erwartet. Daher wurden Probenansätze mit 50\% DNAPL, 0,5\% Calciumchlorid, einer variablen Konzentration Tensid zwischen 0\% und 2\%, sowie Wasser hergestellt. + + +\subsection{Große Konzentrationsreihe}\label{subsec:grosse} + +Der Versuch sollte zeigen, wie sich eine Erhöhung der Tensidkonzentration auf das Gesamtsystem auswirkt. Es sollte eine Aussage über die Tensidkonzentration mit der besten Solubilisierungsrate gemacht werden, sowie der Anstieg der Viskosität kritisch betrachtet werden. +Hierzu wurden Probenansätze mit 50\% DNAPL, 0,5\% Calciumchlorid und eine variable Masse Tensid, von 0\% bis 9\%, sowie Wasser hergestellt. + + + + + + + +\section{Optimierung des Tensidsystems} + +Durch den zusätzlichen Einsatz von Linkern und Cotensiden sollte das vorhandene Tensidsystem optimiert und nach Möglichkeit ein Mikroemulsionssystem definiert werden, da Mikroemulsionen stabiler sind als Makroemulsionen und ein besser steuerbares Fließverhalten zeigen. + + +\subsection{Reihe 1: Kombination einer Stammemulsion mit Linkern und Cotensid} +\label{Reihe 1} + +Zunächst wurde eine zweiprozentige Tensidlösung hergestellt. Hierzu wurde Tensid in eine 250 ml Glasflasche eingewogen und mit Wasser auf die gewünschte Masse aufgefüllt. Der Ansatz wurde erwärmt und gerührt bis zur vollständigen Auflösung des Tensids. +Von der Tensidlösung wurden ein Teil in eine 100 ml-Flasche überführt. Diese wurde verschlossen mit einer Schraubkappe aus PP mit PTFE-Inlay und Luer-Anschlüssen. Zur Tensidlösung wurde nun die gleiche Masse an CS$_2$ gegeben und das ganze gut geschüttelt, so dass eine gleichmäßig Emulsion entstand. + +Die Emulsion wurde auf acht 15 ml-Vials verteilt, wobei die Zugabe mit gasdichten Spritzen über Mininert-Ventile erfolgte. Der erste Ansatz, l0, blieb als als Referenz ohne Zusatz. In die weiteren Vials wurde je ein Linker oder ein Cotensid zugegeben. Die Zugabe erfolgte durch langsames Zutropfen mittels einer 1 ml-Spritze, welches durch mehrmaliges Verschütteln unterbrochen wurde. Da das PEG als Feststoff vorlag wurde es zunächst in Wasser gelöst und als neunprozentige Lösung zugegeben. + +Die fertigen Ansätze wurden über Nacht in ein auf 20°C temperiertes Wasserbad gestellt um die Einstellung eines Gleichgewichtszustandes zu ermöglichen. + + +\subsection{Reihe 2: Erstellen eines Dreikomponentensystems vor Zugabe des DNAPLs} +\label{Reihe 2} + +In der Literatur besteht Uneinigkeit darüber, ob die Reihenfolge der Komponentenzugabe bei der Erstellung einer Mikroemulsion eine Rolle spielt oder nicht. Da die erste Versuchsreihe nicht den gewünschten Erfolg zeigte, wurde daher der Prozess geändert. Es wurde zunächst ein Dreikomponentensystem aus Tensid, Wasser und Cotensid/Linker hergestellt und dann das CS$_2$ zugegeben. Die Überlegung hierbei war, mit den lipophilen Linkern möglichst bereits ein Mikroemulsionssystem zu erzeugen, welches dann die weitere hydrophobe Komponente aufnehmen kann. Auch einer verminderte Eindringung des Linkers in die schon bestehenden Mizellen durch Abschirmwirkung des Tenisids sollte so entgegengewirkt werden. +Dieses Verfahren bot für PEG den Vorteil dass es nicht zuvor gelöst werden musste, sondern direkt zugegeben werden konnte. +Im Falle von lipophilen Linkern wäre es von Vorteil zunächst den Linker zunächst mit dem DNAPL zu vermischen. Aufgrund der schlechten Löslichkeit und der damit schlechten Transportabilität im Grundwasser wurde diese Option in den durchgeführten Batchversuchen nicht berücksichtigt. + +In wiederum acht Vials wurde die zweiprozentige Tensidstammlösung vorgelegt. Der Linker bzw. das Cotensid wurde langsam zugetropft und die Lösung immer wieder durch Schütteln vermischt. Dabei wurde darauf geachtet, ob sich eine leichte Trübung einstellte. Diese ist ein Zeichen dafür, dass entweder eine makromolekulare Emulsion entsteht, oder die Löslichkeit der Komponenten inneinander überschritten wurde und eine Komponente auszufallen beginnt. %Geht man davon aus, dass vorher Mikroemulsion vorlag, muss an diesem Punkt wider Tensidlösung zugegeben werden, um ins Mikroemulsionsystem zurückzugelangen. +Eine solche Trübung stellte sich nur bei den beiden langkettigen Alkoholen ein. Alle anderen Lösungen blieben auch bei mehr als $10\%$ Linker noch klar.%, so dass die Zugabe abgebrochen wurde. +Das Tensid Lutensit A-BO löste sich schlecht in der Tensidlösung, es bildeten sich dabei graue Schlieren. +Zu der Dreikomponentenmischung wurde das CS$_2$ unter mehrmaligem Verschütteln zugetropft. Das CS$_2$ sollte sich vollständig lösen, maximal wurden jedoch 50\% zugegeben. Der Massenanteil der Linker war in diesem Versuch allgemein deutlich geringer, als im ersten Versuch. +Die Mischungen wurden über Nacht ins 20°C warme Wasserbad gestellt. + Index: diplomarbeit/Material.tex =================================================================== --- diplomarbeit/Material.tex (revision 211) +++ diplomarbeit/Material.tex (revision 212) @@ -90,5 +90,5 @@ -Der Versuchsaufbau bestand aus vier mit Sand gepackten Glassäulen, vier Druckaufnehmern (Simatic Sitrans PDS, Siemens, Karlsruhe), vier Membranpumpen (Stepdos FEM 03, KNF Neuberger, Freiburg), Vorratsflaschen für Wasser bzw. Spüllösung (2L, Braunglas), Waagen für die Vorratsflaschen, Gassäcken (Keflar) mit Argon für den Druckausgleich in den Flaschen, einem Vorratsgefäß für das CS$_2$ (Edelstahl), Zu- und Ausleitungen (PFA oder Edelstahl), verschiedenen Ventilen und einem Fraktionensammler (Autosampler). +Der Versuchsaufbau bestand aus vier mit Sand gepackten Glassäulen, vier Druckaufnehmern (Simatic Sitrans PDS, Siemens, Karlsruhe), vier Membranpumpen (Stepdos FEM 03, KNF Neuberger, Freiburg), Vorratsflaschen für Wasser bzw. Spüllösung (2L, Braunglas), Waagen für die Vorratsflaschen, Gassäcken (Tedlar) mit Argon für den Druckausgleich in den Flaschen, sowie einem Vorratsgefäß für das CS$_2$ (Edelstahl), Zu- und Ausleitungen (PFA oder Edelstahl), verschiedenen Ventilen und einem Fraktionensammler (Autosampler). %Hier muss eine Skizze vom Säulenstand und den Verbindungen zu den Pumpen und Gefäßen rein @@ -96,8 +96,8 @@ -\subsection{Säulen} +\subsection{Material und Vorbereitung der Säulen} \label{S"aulen} -Die verwendeten Glassäulen hatten einen Innendurchmesser von 4cm und waren 50cm lang. Die Verwendung von Glas als Säulenmaterial ermöglicht die optische Überwachung der Strömung. Effekte wie z.B. Fingering und Mobilisierung können gut beobachtet und der Sanierungsverlauf photografisch dokumentiert werden. +Die verwendeten Glassäulen hatten einen Innendurchmesser von 40 mm und waren 0,5 m lang. Die Verwendung von Glas als Säulenmaterial ermöglicht die optische Überwachung der Strömung. Effekte wie z.B. Fingering und Mobilisierung können gut beobachtet und der Sanierungsverlauf photografisch dokumentiert werden. Das weitere Säulenzubehör ist in Abbildung \ref{pic:S"aule} vollständig zu sehen und in Tabelle \ref{tab:S"aulenzubehör} aufgeführt. @@ -142,12 +142,13 @@ Zunächst wurde der untere Teil an die Säule angebaut. Eine Ringscheibe (c) und ein mit O-Ring (h) ausgestatteter Dichtring (d) wurden über die Säule geschoben. Der innere O-Ring (f), der für die Dichtigkeit zwischen Abdeckung (e) und Säulenrand sorgt, wurde so in die Vertiefung der Abdeckung eingelegt, dass er auch beim Umdrehen nicht mehr heraussprang. Die Abdeckung wurde dann auf die umgedrehte Säule aufgelegt und der O-Ring (g), der für die Dichtigkeit zwischen Abdeckung und Deckplatte (b) sorgt, in die vorgesehene Vertiefung gelegt. Die Deckplatte (b) wurde aufgesetzt und alle Komponenten mit drei Schrauben (i) und Muttern fest miteinander verbunden. Auf die überstehenden Schraubenenden wurden die Füße (s) geschraubt und die Säule auf diese gestellt. Auf dem Säulenboden wurde nun zuerst eine Lochplatte und dann ein Netz, bzw. für Feinsand eine direkt mit einem feinen Netz umwickelte Lochplatte platziert. Die Säulen wurden mit einem temporären Schutz am oberen Glasrand ausgestattet und mit Sand gepackt, siehe Abschnitt \ref{subsubsec:packen}. -Die Höhe der Sandfüllung wurde mit einem Abstandshalter überprüft und falls nötig durch vorsichtiges Entfernen oder Zugeben von Sand mittels eines Löffels ausgeglichen. Auf den Sand wurde wiederum ein Netz und eine Lochscheibe gelegt. Die Lochscheibe war mittels Draht mit der Feder (o) verbunden. Um die Feder herum bzw. in deren Mitte wurden die Abstandshalter (p und q) platziert. Ringscheibe (c), Dichtring (d), Abdeckung (e) und O-Ringe wurden wie im Bodenteil verbaut und verschraubt. Boden und Kopf der Säule wurden mit den Gewindestangen (j) verbunden. Alle Muttern (r) wurden mit $9$ kN/m angezogen. +Die Höhe der Sandfüllung wurde mit einem Abstandshalter überprüft und falls nötig durch vorsichtiges Entfernen oder Zugeben von Sand mittels eines Löffels ausgeglichen. Auf den Sand wurde wiederum ein Netz und eine Lochscheibe gelegt. Die Lochscheibe war mittels Draht mit der Feder (o) verbunden. Um die Feder herum bzw. in deren Mitte wurden die Abstandshalter (p und q) platziert. Ringscheibe (c), Dichtring (d), Abdeckung (e) und O-Ringe wurden wie im Bodenteil verbaut und verschraubt. Boden und Kopf der Säule wurden mit den Gewindestangen (j) verbunden. Alle Muttern (r) wurden mit 9 Nm angezogen. \subsubsection{Poröses Medium} Es wurden zwei Sande der Firma Dorfner als poröse Medien verwendet. Diese wurden vor dem Einbau noch weiter aufbereitet. Um Feinanteile, die durch den Transport entstehen können, sowie gröbere Anteile und sonstige Verunreinigungen zu entfernen, wurde der Sand gesiebt, gewaschen und getrocknet. -Der Mittelsand (Dorfner Dorsilit No.8) wurde mit Sieben der Maschenweite 0,04cm sowie 1,25cm gesiebt. Für den Feinsand (Dorfner GEBA) wurden Siebe der Maschenweite 0,063cm und 0,315cm verwendet. +Der Mittelsand (Dorfner Dorsilit No.8) wurde mit Sieben der Maschenweite 0,4 mm sowie 1,25 mm gesiebt. Für den Feinsand (Dorfner GEBA) wurden Siebe der Maschenweite 0,063 mm und 0,315 mm verwendet. Die jeweilige Mittelfraktion wurde im Sieb gewaschen um die Feinbestandteile zu entfernen und anschließend im -Trockenofen bei 105°C mindestens 24 Stunden getrocknet. +Trockenofen bei 105°C mindestens 24 Stunden getrocknet. +%Dorsilit 0,3-0,8mm, Geba 0,063-0,315mm \subsubsection{Packen der Säulen} @@ -155,8 +156,7 @@ Für das Packen der Säulen wurde eine Fallrohrvorrichtung benutzt, welche ein gleichmäßiges Verrieseln des Sandes -gewährleisten sollte. Die Vorrichtung besteht aus drei Teilen: Einem Füllrohr, das durch einen Metallspatel nach unten +gewährleisten sollte. Die Vorrichtung besteht aus drei Teilen: Einem Füllrohr, das durch einen Schieber nach unten verschlossen werden kann, dem eigentlichen Fallrohr und einem Stutzen, mit dem es auf die Säulen aufgesetzt wurde. -Am oberen Ende des Fallrohres wurde eine Metallscheibe mit Löchern eingelegt. Die Lochung variierte abhängig -vom verwendeten Sand. Für den Mittelsand wurde ein Lochdurchmesser von 3mm und für den Feinsand ein Durchmesser von 2mm verwendet. Im Fallrohr waren zwei zueinander verdrehte Netze aus Draht gespannt. Sie sollten der Dichteentmischung während des freien Falls entgegen wirken. +Am oberen Ende des Fallrohres wurde eine, auf den jeweiligen Sand abgestimmte, Metallscheibe mit Löchern als Blende eingelegt. Für den Mittelsand wurde ein Lochdurchmesser von 3 mm und für den Feinsand ein Durchmesser von 2 mm verwendet. Im Fallrohr waren zwei zueinander verdrehte Netze aus Draht als Diffusor gespannt. Sie sollten der Dichteentmischung während des freien Falls entgegen wirken. Das Fallrohr wurde am unteren Ende über einen Klemmring mit dem Stutzen verschraubt. Durch Abstandshalter, die zwischen Stutzen und Klemmring angebracht waren, wurde das Entweichen der Luft aus der Säule während des Befülles ermöglicht. Die Säule wurde über den Stutzen mit dem Fallrohr verbunden und auf eine Vibrierplatte gestellt. Durch einen aufgeschraubten druckluftgetriebenen Vibrator %(Kugelvibrator? Marke?) @@ -185,5 +185,5 @@ -Die fertig gepackten Säulen wurden einer Dichtigkeitskontrolle unterzogen. Dazu wurde der obere Auslass verschlossen und die Säule von unten mit einer Stickstoffleitung verbunden. Es wurde ein Druck von 200mbar angelegt und zwei Minuten gewartet, um diesen Druck in der Säule zu gewährleisten. Dann wurde ein Lecksuchspray auf alle kritischen Stellen aufgebracht und beobachtet, ob sich Blasen bildeten, die das Entweichen von Luft aus der Säule anzeigen. +Die fertig gepackten Säulen wurden einer Dichtigkeitskontrolle unterzogen. Dazu wurde der obere Auslass verschlossen und die Säule von unten mit einer Stickstoffleitung verbunden. Es wurde ein Druck von 200 mbar angelegt und zwei Minuten gewartet, um diesen Druck in der Säule zu gewährleisten. Dann wurde ein Lecksuchspray auf alle kritischen Stellen aufgebracht und beobachtet, ob sich Blasen bildeten, die das Entweichen von Luft aus der Säule anzeigen. \subsection{Aufsättigen der Säulen} @@ -199,11 +199,11 @@ Die Säulen wurden in den Versuchsstand eingebaut und aufwärts mit drei bis vier Porenvolumen demineralisiertem, entgastem Wasser gespült, um die Poren mit Wasser zu füllen. -Das Wasser wurde aus vier 2L-Flaschen gepumpt. Entgast wurde das Wasser durch Erzeugen eines Unterdruckes (60-80mbar) mittels einer Membranpumpe. Siedeperlen aus Glas in den Flaschen sollten die Blasenbildung fördern. Der Entgasungsvorgang dauerte mindestens eine Stunde lang, am Ende sollten bei leichtem Schütteln der Flaschen keine Bläschen mehr sichtbar sein. Nach dem Entgasen wurde der Luftraum über der Flüssigkeit mit Argon gefüllt, die Flaschen an die Pumpenzuleitungen angeschlossen und mit einem argongefüllten Tedlarsack verbunden. Argon löst sich selbst kaum in Wasser und verhindert zudem das Eindringen von Luft, da es sich aufgrund seiner hohen spezifischen Dichte über das Wasser legt. +Das Wasser wurde aus vier 2 L-Flaschen gepumpt. Entgast wurde das Wasser durch Erzeugen eines Unterdruckes (60-80 mbar) mittels einer Membranpumpe. Siedeperlen aus Glas in den Flaschen sollten die Blasenbildung fördern. Der Entgasungsvorgang dauerte mindestens eine Stunde lang, am Ende sollten bei leichtem Schütteln der Flaschen keine Bläschen mehr sichtbar sein. Nach dem Entgasen wurde der Luftraum über der Flüssigkeit mit Argon gefüllt, die Flaschen an die Pumpenzuleitungen angeschlossen und mit einem argongefüllten Tedlarsack verbunden. Argon löst sich selbst kaum in Wasser und verhindert zudem das Eindringen von Luft, da es sich aufgrund seiner hohen spezifischen Dichte über das Wasser legt. \subsubsection{Aufättigen mit CS$_2$} -Zunächst musste das Vorratsgefäß mit Schadstoff befüllt werden. -Dazu wurde eine auf einem Brett fest montierte gasdichte Glasspritze (10ml, Hamilton/ VWR) über ein Dreiwegeventil (PTFE) +Zunächst musste das Vorratsgefäß mit CS$_2$ befüllt werden. +Dazu wurde eine auf einem Brett fest montierte gasdichte Glasspritze (10 ml, Hamilton/ VWR) über ein Dreiwegeventil (PTFE) mit der Transportflasche, welche mit neuem angefärbtem DNAPL gefüllt war, und dem Vorratsgefäß verbunden. Die Verbindungsschläuche %aus Material? wurden gespült, durch Ansaugen von Flüssigkeit aus dem Vorratsgefäß und Ausdrücken in die @@ -221,11 +221,11 @@ Zum Aufsättigen der Säulen wurde wiederum Wasser von oben in das Vorratsgefäß gepumpt und der DNAPL nach unten -herausgedrückt. Über einen Verteiler (Type $SS-43ZFS2$, Edelstahl, Swagelog) wurde der Weg zu einer Säule freigeschaltet und die Säule von unten nach oben -befüllt. Dabei wurde mindestens ein Porenvolumen CS$_2$ in die Säule gepumpt, mit einer Fließrate von 3ml/min. -Anschließend wurde mit drei bis vier Porenvolumina Wasser nachgespült. Dabei wurde sowohl abwärts, als auch aufwärts +herausgedrückt. Über einen Verteiler (Type $SS-43ZFS2$, Edelstahl, Swagelok) wurde der Weg zu einer Säule freigeschaltet und die Säule von unten nach oben +befüllt. Dabei wurde mindestens ein Porenvolumen (PV) CS$_2$ in die Säule gepumpt, mit einer Fließrate von 3 ml/min. +Anschließend wurde mit drei bis vier PV Wasser nachgespült. Dabei wurde sowohl abwärts, als auch aufwärts gespült. Dadurch sollte überschüssiger DNAPL aus der Säule entfernt werden. Die Residualsättigung in der Säule wurde durch eine Massenbilanzierung bestimmt. Die Auffangflaschen wurden gewogen, die Schwerphase entfernt und wieder gewogen. Das Volumen in der Säule nach dem Aufsättigen wurde wie folgt ermittelt: -\mbox{$m_{leicht}=V_{leicht}=V_{schwer}$}. +\mbox{$m_{Wasser}=V_{Wasser}=V_{CS_2}$}; das Volumen des verdrängten Wassers entspricht dessen Masse, da die Dichte von Wasser genau 1 g/ml beträgt und das Volumen an verdrängtem Wasser entspricht dem Volumen an CS$_2$. @@ -234,6 +234,6 @@ Sämtliche zu- und abgeführten Chemikalien wurden massenmäßig bilanziert. Hierzu standen sechs Laborwaagen zur Verfügung. Die mit Wasser bzw. Tensidlösung oder Isopropanol befüllten Vorratsflaschen wurden auf eigens dafür vorgesehenen Waagen (Firma, Parameter) platziert. Der Ausfluss aus den Flaschen wurde kontinuierlich mittels Messprotokoll auf dem Laborrechner erfasst und die Masse und Zeit festgehalten. -Für Einwaagen stand eine Analysenwaage (Santorius, max. 120g, Ablesbarkeit 0,1mg) und eine weitere Präzisionswaage zur Verfügung (Santorius, max. 3kg, Ablesbarkeit 10mg). Hier wurden auch alle Proben gewogen. -Die Säulen konnten aufgrund ihres zu hohen Gewichtes nicht im Labor gewogen werden. Hier wurde auf eine Industriewaage (Messbereich 12kg, Ablesbarkeit 1g) zurückgegriffen. +Für Einwaagen stand eine Analysenwaage (Santorius, max. 120 g, Auflösung 0,1 mg) und eine weitere Präzisionswaage zur Verfügung (Santorius, max. 3 kg, Auflösung 10 mg). Hier wurden auch alle Proben gewogen. +Die Säulen konnten aufgrund ihres zu hohen Gewichtes nicht im Labor gewogen werden. Hier wurde auf eine Industriewaage (Messbereich 12 kg, Auflösung 1 g) zurückgegriffen. %Bezeichnung und Kenngrößen der Laborwaagen @@ -242,5 +242,5 @@ Zur Probenahme wurden Glasflaschen in unterschiedlichen Größen, von 100ml bis 1L, verwendet. Die Flaschen wurden mit Schaubkappen (T-Serie, Omnifit) mit PTFE-Dichtung und zwei integrierten konischen Durchführungen verschlossen. %Bild Deckel Durch die Durchführungen konnten die Flaschen mittels Schläuchen an den Auslauf der Säulen angeschlossen werden. Um die Verdampfungsverluste gering zu halten, aber einen Druckaufbau zu verhindern, wurde auf die zweite Durchführung eine gekürzte Nadel mit einem Durchmesser von 6mm gesteckt. Die gefüllten Flaschen wurden bis zur weiteren Untersuchung des Eluats mit PTFE-Stopfen verschlossen. -Kleine Fraktionen bis 60ml wurden in Vials mit passenden, den Omnifit-Deckeln nachempfundenen Schraubkappen aufgefangen. Die kleinen Flaschen gestalteten den Aufbau bei Benutzung des Fraktionensammlers mit insgesamt 32 Schläuchen übersichtlicher und verringerten, aufgrund des kleinen Luftraums, die Verluste durch Ausdampfen. +Kleine Fraktionen bis 60ml wurden in Vials mit passenden, den Omnifit-Deckeln nachempfundenen Schraubkappen aufgefangen. Die kleinen Flaschen gestalteten den Aufbau bei Benutzung des Fraktionensammlers mit insgesamt 32 Schläuchen übersichtlicher und verringerten aufgrund des kleinen Luftraums die Verluste durch Ausdampfen. Index: diplomarbeit/Kapitel_2.tex =================================================================== --- diplomarbeit/Kapitel_2.tex (revision 211) +++ diplomarbeit/Kapitel_2.tex (revision 212) @@ -25,11 +25,11 @@ \end{figure} -Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen 15g/l und 50g/l. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm. +Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen 15 g/l und 50 g/l. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm. Dieses wird berechnet, indem die Masse an gelöster Schwerphase auf die Masse an Tensid bezogen wird: $S=m_{CDS}/m_{Surfactant}$. Im betrachteten Konzentrationsbereich fällt das Solubilisierungspotential bei Zugabe von Tensid zunächst deutlich und bei weiterer Tensidzugaben geringer ab. Der Verlauf lässt sich mit der Mizellbildung erklären. So lagern sich zunächst Tensidmoleküle an die Grenzfläche an, senken die Grenzflächenspannung und verbessern die Solubilisierung sehr rasch. Dieser Effekt wird bereits durch kleinste Mengen eines Emulgators erreicht. Bei erreichen der CMC ändert sich die Grenzflächenspannung nicht mehr und eine weitere Solubilisierung wird nur noch durch die Einlagerung in Mizellen erreicht. Da in einer Mizelle die DNAPL-Moleküle nicht nur angelagert, sondern komplett von Tensidmolekülen umschlossen werden, sind hier mehr Tensidmoleküle notwendig. Der Verbrauch an Tensid steigt im Verhältnis zur gelösten Schwerphase. -Die gemessene Oberflächenspannung fällt zunächst steil ab um dann auf einem konstanten Niveau zu bleiben. Sie lag für die Kontrollproben ohne Tensid bei 65mN/m, für alle anderen Proben bei 40mN/m. %Dies erklärt sich so, dass bei erreichen der CMC sämtliche Grenzflächen mit Tensidmolekülen besetzt sind und sich die Tensidmoleküle in den thermodynamisch nächstgünstigsten Zustand begeben. Sie lagern sich im inneren des Lösemittels zu Mizellen zusammen. Die Grenzflächen bleiben unverändert, also bleibt die Grenz-/ bzw Oberflächenspannung konstant mit erreichen der CMC. -Wie beschrieben ist dies ein Effekt der bei Überschreiten der CMC auftritt. Die Differenz der Oberflächenspannung der Kontrollproben zur Oberflächenspannung von Wasser (72,5mN/m) wird verursacht durch die geringen Menge an gelöstem CS$_2$. Dieses löst sich in reinem Wasser zu 2g/L. Wobei die Löslichkeit durch das bivalente Salz Calciumchlorid leicht erhöht sein kann. +Die gemessene Oberflächenspannung fällt zunächst steil ab um dann auf einem konstanten Niveau zu bleiben. Sie lag für die Kontrollproben ohne Tensid bei 65 mN/m, für alle anderen Proben bei 40mN/m. %Dies erklärt sich so, dass bei erreichen der CMC sämtliche Grenzflächen mit Tensidmolekülen besetzt sind und sich die Tensidmoleküle in den thermodynamisch nächstgünstigsten Zustand begeben. Sie lagern sich im inneren des Lösemittels zu Mizellen zusammen. Die Grenzflächen bleiben unverändert, also bleibt die Grenz-/ bzw Oberflächenspannung konstant mit erreichen der CMC. +Wie beschrieben ist dies ein Effekt der bei Überschreiten der CMC auftritt. Die Differenz der Oberflächenspannung der Kontrollproben zur Oberflächenspannung von Wasser (72,5 mN/m) wird verursacht durch die geringen Menge an gelöstem CS$_2$. Dieses löst sich in reinem Wasser zu 2g/L. Wobei die Löslichkeit durch das bivalente Salz Calciumchlorid leicht erhöht sein kann. -Die Dichte war für alle Proben nur gering erhöht mit 1,02-1,03g/ml, wobei eine steigende Dichte mit steigender Tensid- und damit auch CS$_2$-Konzentration zu verzeichnen war. Ebenso verhielt es dich mit der Viskosität, die mit steigender Tensidkonzentration anstieg und ihr Maximum bei 1,6m$^{2}$/s erreichte. +Die Dichte war für alle Proben nur gering erhöht mit 1,02-1,03 g/ml, wobei eine steigende Dichte mit steigender Tensid- und damit auch CS$_2$-Konzentration zu verzeichnen war. Ebenso verhielt es dich mit der Viskosität, die mit steigender Tensidkonzentration anstieg und ihr Maximum bei 1,6 m$^{2}$/s erreichte. @@ -55,9 +55,9 @@ \end{figure} -Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund 5\%. Das maximale Solubilisierungspotential wurde ebenfalls bei 5\% Tensid erreicht. Allerdings stieg die Viskosität ab 3\% Tensid an und überschritt bei 5\% Tensid bereits 5m$^{2}$/s. Oberhalb von 5\% Tensid stieg die Viskosität stark an, auf Werte über 40m$^{2}$/s. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kapillardurchmesser 20$µ$m ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare zurückdrücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet. Sie dürften aber dennoch sehr hoch liegen. +Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund 5\%. Das maximale Solubilisierungspotential wurde ebenfalls bei 5\% Tensid erreicht. Allerdings stieg die Viskosität ab 3\% Tensid an und überschritt bei 5\% Tensid bereits 5 m$^{2}$/s. Oberhalb von 5\% Tensid stieg die Viskosität stark an, auf Werte über 40 m$^{2}$/s. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kapillardurchmesser 20 $µ$m ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare zurückdrücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet. Sie dürften aber dennoch sehr hoch liegen. -Die Oberflächenspannung lag für alle Tensid enthaltenden Proben konstant bei \mbox{35mN/m}, nur die Referenzproben ohne Tensid lagen über 60mN/m. Das entspricht etwa den Messwerten aus der CMC-Reihe. +Die Oberflächenspannung lag für alle Tensid enthaltenden Proben konstant bei \mbox{35 mN/m}, nur die Referenzproben ohne Tensid lagen über 60 mN/m. Das entspricht etwa den Messwerten aus der CMC-Reihe. -Die Dichte stieg ab einer Tensidkonzentration von 2\% an, bis auf Werte von 1,1g/L. Die Dichte und damit auch die Masse an gelöster Schwerphase war also deutlich erhöht. +Die Dichte stieg ab einer Tensidkonzentration von 2\% an, bis auf Werte von 1,1 g/L. Die Dichte und damit auch die Masse an gelöster Schwerphase war also deutlich erhöht. @@ -98,8 +98,8 @@ \end{figure} -Abbildung \ref{pic:Reihe 1} zeigt die Proben der ersten Versuchsreihe. Bei Zugabe von Hexanol und Decanol, zum Dreikomponentensystem Wasser-Tensid-CS$_2$, war zu beobachten, wie sich der Alkohol auf der Oberfläche anreicherte statt in die Emulsion einzudringen. Beim Verschütteln bildeten sich zunächst abgeschlossene Tropfen, die sich bevorzugt an der Gefäßwand anlagerten. Erst nach längerem, kräftigen Schütteln lösten sie sich. Abbildung \ref{pic:Hexanol} zeigt ein größeres Volumen Hexanol, das auf der Emulsion aufschwimmt. Dies ist auf die geringe Dichte von Hexanol von 0,82g/ml und der relativ geringen Löslichkeit in Wasser von 5,9g/L zurückzuführen. -Decanol hat eine extrem niedrige Löslichkeit in Wasser von 37mg/L. Beim Zutropfen sammelte es sich ebenfalls an der Oberfläche, wo es sich direkt rötlich färbte und das CS$_2$ förmlich aus der Lösung zu ziehen schien. Isopropanol vermischte sich problemlos mit der Emulsion und führte zur Entstehung einer deutlich ausgeprägten rosa gefärbten Mittelphase, wie auch Lutensol ON60 und Igepal CO-630 und in geringem Maße PEG. +Abbildung \ref{pic:Reihe 1} zeigt die Proben der ersten Versuchsreihe. Bei Zugabe von Hexanol und Decanol, zum Dreikomponentensystem Wasser-Tensid-CS$_2$, war zu beobachten, wie sich der Alkohol auf der Oberfläche anreicherte statt in die Emulsion einzudringen. Beim Verschütteln bildeten sich zunächst abgeschlossene Tropfen, die sich bevorzugt an der Gefäßwand anlagerten. Erst nach längerem, kräftigen Schütteln lösten sie sich. Abbildung \ref{pic:Hexanol} zeigt ein größeres Volumen Hexanol, das auf der Emulsion aufschwimmt. Dies ist auf die geringe Dichte von Hexanol von 0,82 g/ml und der relativ geringen Löslichkeit in Wasser von 5,9 g/L zurückzuführen. +Decanol hat eine extrem niedrige Löslichkeit in Wasser von 37 mg/L. Beim Zutropfen sammelte es sich ebenfalls an der Oberfläche, wo es sich direkt rötlich färbte und das CS$_2$ förmlich aus der Lösung zu ziehen schien. Isopropanol vermischte sich problemlos mit der Emulsion und führte zur Entstehung einer deutlich ausgeprägten rosa gefärbten Mittelphase, wie auch Lutensol ON60 und Igepal CO-630 und in geringem Maße PEG. -Beim Verschütteln der Probe mit Lutensit A-BO bildete sich eine stark ausgeprägte, deutlich rosa gefärbte, schwammige Mittelphase aus, siehe Abbildung \ref{pic:Lutensol}. Außerdem war eine großer Anteil an nicht solubilisierter Schwerphase vorhanden. Die Mittelphase war über den Beobachtungszeitraum stabil, bei konstant auf 20 °C gehaltener Temperatur. Nach der Lagerung im Kühlraum und neuerlichem Aufschütteln der Proben konnten diese Strukturen jedoch nicht wieder hergestellt werden. +Beim Verschütteln der Probe mit Lutensit A-BO bildete sich eine stark ausgeprägte, deutlich rosa gefärbte, schwammige Mittelphase aus, siehe Abbildung \ref{pic:Lutensol}. Außerdem war eine großer Anteil an nicht solubilisierter Schwerphase vorhanden. Die Mittelphase war über den Beobachtungszeitraum stabil, bei konstant auf 20°C gehaltener Temperatur. Nach der Lagerung im Kühlraum und neuerlichem Aufschütteln der Proben konnten diese Strukturen jedoch nicht wieder hergestellt werden. @@ -143,3 +143,3 @@ Wie sich die Temperatur bei der Emulsifikation auf die Tröpfchengröße auswirkt zeigt Shinoda \cite{Shinoda.1969} mit seinen Untersuchungen an einer zu Brij 97 verwandten Gruppe von Tensiden. Es wird außerdem der Zusammenhang zwischen Phaseninversionstemperatur und Größe der hydrophilen Gruppe des Tensids dargestellt. Demnach gilt: Die PIT variiert mit der Schwerphase und der Länge des hydrophilen Teils des Tensids. Allgemein lässt sich sagen, dass die Wechselwirkungen zwischen hydrophilem Tensidteil und Wasser bei abnehmender Temperatur steigen. Eine Vergrößerung der hydrophilen Gruppe führt ebenfalls zu steigenden Wechselwirkungen mit Wasser. Daher ist mit größer werdem hydrophilen Anteil eine höhere Temperatur nötig um die Tröpfchen zu verkleinern. -Will man also bei niedriger Temperatur arbeiten, sollte man ein Tensid mit kleiner Kopfgruppe verwenden. Die Emulsifikation nach der PIT-Methode wird in einem Temperaturbereich knapp unterhalb der PIT durchgeführt und die Emulsion dann rasch auf Lagerungstemperatur abgekühlt um stabile Emulsionen mit geringen Tröpfchengrößen zu erhalten .\cite{Shinoda.1969}. Die PIT-Methode kann für das vorliegende System allerdings nur eingeschränkt zum Einsatz kommen, da aufgrund des hohen Dampfdrucks des Schwefelkohlenstoffs nur eine moderate Temperaturerhöheung möglich ist. +Will man also bei niedriger Temperatur arbeiten, sollte man ein Tensid mit kleiner Kopfgruppe verwenden. Die Emulsifikation nach der PIT-Methode wird in einem Temperaturbereich knapp unterhalb der PIT durchgeführt und die Emulsion dann rasch auf Lagerungstemperatur abgekühlt um stabile Emulsionen mit geringen Tröpfchengrößen zu erhalten.\cite{Shinoda.1969}. Die PIT-Methode kann für das vorliegende System allerdings nur eingeschränkt zum Einsatz kommen, da aufgrund des hohen Dampfdrucks des Schwefelkohlenstoffs nur eine moderate Temperaturerhöheung möglich ist. Index: diplomarbeit/Kapitel_3.tex =================================================================== --- diplomarbeit/Kapitel_3.tex (revision 211) +++ diplomarbeit/Kapitel_3.tex (revision 212) @@ -2,5 +2,5 @@ \label{col} -\section{Durchführung} +\section{Vorbereitung} Vorbereitend wurden sämtliche Leitungen gründlich mit Wasser gespült, um mögliche Rückstände voriger Versuche zu entfernen und Blasenfreiheit herzustellen. Erst dann konnten die Säulen eingebaut und wie in Abschnitt \ref{aufs"attigen} beschrieben aufgesättigt werden. @@ -8,6 +8,7 @@ Sobald die Säulen wassergesättigt waren, konnten die Druckaufnehmer kalibriert werden. Dazu wurde die obere und untere Druckleitung zwischen einem Druckaufnehmer und dem Piezometer geöffnet. Als erstes wurde der Druck zwischen beiden Leitungen ausgeglichen. Dazu wurde eine Schlauchbrücke, die über Dreiwegeventile an die Piezometerleitungen angeschlossen war, geöffnet. Nachdem sich in beiden Leitungen die gleiche Druckhöhe eingestellt hatte wurde diese an die Druckaufnehmer angelegt, indem die Verbindungen wieder geöffnet wurden. Im zweiten Schritt wurde ein unterer und ein oberer Referenzpunkt gesetzt. Dazu wurde die Brücke wieder geöffnet und der Wasserspiegel in einem Piezometerrohr abgesenkt, wodurch er im anderen erhöht wurde. Die drei Kalibrierpunkte wurden mittels HART-Modem auf den Messrechner übertragen. Dort erfolgte die eigentliche Kalibrierung der Druckaufnehmer über die Steuerungssoftware (Simatic PDM, Siemens). %Die vorgenommenen Einstellungen wurden zudem in die Verwaltung von Nextview übernommen, da dort der Druckverlauf aufgezeichent wurde. +\section{Sanierung} Die Säulen wurden saniert, indem zunächst mit einer Tensidlösung und anschließend mit Wasser gespült wurde. Um eine vollständige Sanierung zu erhalten und eine mögliche Restkontamination bilanzieren zu können, wurden die Säulen mit Isopropanol (IPA) und ein weiteres Mal mit Wasser nachgespült. Die Randbedingungen der einzelnen Säulen sind in Tabelle \ref{tab:Bedingungen} aufgelistet. -Die Probenahmeflaschen wurden das erste Mal kurz vor dem Durchbruch der Emulsion gewechselt. Danach wurde zunächst alle 0,3 Porenvolumen (PV) gewechselt, später dann nur noch nach 0,7 PV. Das Umschalten auf Wasserspülung erfolgte erst, nachdem keine weiße Emulsion mehr in der Säule sichtbar bzw. die aufgefangene Flüssigkeit in den Flaschen klar war. Das Ende der Wasserspülung wurde bestimmt durch Messen der Oberflächenspannung. Mit fortgeschrittener Verdünnung der Tensidreste in der Säule steigt diese wieder auf den Wert von Wasser (72,75mN/m) an. +Die Probenahmeflaschen wurden das erste Mal kurz vor dem Durchbruch der Emulsion gewechselt. Danach wurde zunächst alle 0,3 Porenvolumen (PV) gewechselt, später dann nur noch nach 0,7 PV. Das Umschalten auf Wasserspülung erfolgte erst, nachdem keine weiße Emulsion mehr in der Säule sichtbar bzw. die aufgefangene Flüssigkeit in den Flaschen klar war. Das Ende der Wasserspülung wurde bestimmt durch Messen der Oberflächenspannung. Mit fortgeschrittener Verdünnung der Tensidreste in der Säule steigt diese wieder auf den Wert von Wasser (72,75 mN/m) an. @@ -66,11 +67,11 @@ \section{Messgrößen} -Die Konzentration an CS$_2$ wurde mittels HPLC bestimmt und mittels UV(VIS)-Detektor bei 210nm bzw. 315nm gemessen, abhängig von der erwarteten Konzentration. Zur Auswertung standen vier Methoden zur Verfügung, die sich in der Wellenlänge der Messung und dem zu Grunde gelegten Kalibrierbereich unterschieden. Dadurch sollten Messungenauigkeiten gering gehalten werden. Proben mit einer Konzentration am Randbereich einer Kalibrierung wurden außerdem noch mit der zweiten passenden Methode gemessen. Die Proben wurden unmittelbar vor der Messung im Verhältnis $1/100$ mit Methanol verdünnt. Im Fall von milchig trüber Makroemulsion wurden die Probe in zwei Schritten verdünnt um eine einheitlichere Probe zu erhalten. Im ersten Schritt wurden 2ml Probe in 20ml Methanol gelöst und daraus wiederum $1/10$ weiterverdünnt. +Die Konzentration an CS$_2$ wurde mittels HPLC bestimmt und mittels UV(VIS)-Detektor bei 210 nm bzw. 315 nm gemessen, abhängig von der erwarteten Konzentration. Zur Auswertung standen vier Methoden zur Verfügung, die sich in der Wellenlänge der Messung und dem zu Grunde gelegten Kalibrierbereich unterschieden. Dadurch sollten Messungenauigkeiten gering gehalten werden. Proben mit einer Konzentration am Randbereich einer Kalibrierung wurden außerdem noch mit der zweiten passenden Methode gemessen. Die Proben wurden unmittelbar vor der Messung im Verhältnis $1/100$ mit Methanol verdünnt. Im Fall von milchig trüber Makroemulsion wurden die Probe in zwei Schritten verdünnt um eine einheitlichere Probe zu erhalten. Im ersten Schritt wurden 2 ml Probe in 20 ml Methanol gelöst und daraus wiederum $1/10$ weiterverdünnt. -Die Dichte wurde durch Wägung eines definierten Volumens für alle Proben bestimmt. 10ml-Gläschen wurden mit einem Gummistopfen versehen und gewogen. Dann wurden mittels einer Spritze 2,5ml Probe zugegeben und wieder gewogen. Aus der Massendifferenz geteilt durch das zugegebene Volumen ergibt sich die Dichte der Probe in Gramm pro Milliliter. +Die Dichte wurde durch Wägung eines definierten Volumens für alle Proben bestimmt. 10 ml-Gläschen wurden mit einem Gummistopfen versehen und gewogen. Dann wurden mittels einer Spritze 2,5 ml Probe zugegeben und wieder gewogen. Aus der Massendifferenz geteilt durch das zugegebene Volumen ergibt sich die Dichte der Probe in Gramm pro Milliliter. -Die Oberflächenspannung (OFS) wurde mittels einem Blasendrucktensiometer (BPA-1P, Sinterface) durchgeführt. Im genutzten "Fast-Scan-Modus" des Geräts dauerte die Messung bis zu zehn Minuten, daher wurden nicht alle Proben gemessen. Die Messung erfolgte parallel zum Versuch, da sie darüber Aufschluss gibt, wann die maximal gelöste Konzentration (niedrigste OFS) vorliegt und wann die Sanierung beendet ist (OFS entspricht der von Wasser: $72,75$ mN/m). +Die Oberflächenspannung (OFS) wurde mittels einem Blasendrucktensiometer (BPA-1P, Sinterface) durchgeführt. Im genutzten "Fast-Scan-Modus" des Geräts dauerte die Messung bis zu zehn Minuten, daher wurden nicht alle Proben gemessen. Die Messung erfolgte parallel zum Versuch, da sie darüber Aufschluss gibt, wann die maximal gelöste Konzentration (niedrigste OFS) vorliegt und wann die Sanierung beendet ist (OFS entspricht der von Wasser: 72,75 mN/m). Für einzelne Proben wurde zudem die Viskosität bestimmt. Diese wurde mit einem Ubbelohde-Vikosimeter dreifach gemessen. Da die Viskosität im Versuchsverlauf schnell wieder abnahm und die Messung sehr Zeitaufwändig war, wurde sie nur an den Proben durchgeführt, für die aufgrund des Aussehens und des Fließverhaltens eine erhöhte Viskosität zu erwarten war. -Der Relativdruck in der Säule wurde mit Druckaufnehmern (Sitrans-P DS3, Siemens, Karlsruhe) gemessen. Diese wurden über T-Stücke (Swagelog) an die Zu- und Ausleitung der Säulen angeschlossen. Dadurch konnten die Druckunterschiede in der Säule bei Änderung des Fluids dargestellt werden. +Der Relativdruck in der Säule wurde mit Druckaufnehmern (Sitrans-P DS3, Siemens, Karlsruhe) gemessen. Diese wurden über T-Stücke (Swagelok) an die Zu- und Ausleitung der Säulen angeschlossen. Dadurch konnten die Druckunterschiede in der Säule bei Änderung des Fluids dargestellt werden. Index: diplomarbeit/Kapitel_4.tex =================================================================== --- diplomarbeit/Kapitel_4.tex (revision 211) +++ diplomarbeit/Kapitel_4.tex (revision 212) @@ -28,5 +28,5 @@ -Finger, wie in Abbildung \ref{fingering_mob} in der zweiten Säule von links ($32$) zu sehen, treten auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt wurden. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund $80$\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. +Finger, wie in Abbildung \ref{fingering_mob} in der zweiten Säule von links (Nr. 32) zu sehen, treten auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt wurden. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund 80\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. Bei anderen Versuchen, mit deutlich geringer Tracerkonzentration, konnten keine derartig ausgeprägten Finger im Feinsand beobachtet werden. Im Mittelsand wurden bei einzelnen Säulen vergleichbare Beobachtungen gemacht, wobei die Unregelmäßigkeit immer im Zusammenhang mit Mobilisation auftrat. Da die Beobachtung stets nur bei einer von zwei parallel betriebenen Säulen gemacht wurde, wird dies nicht durch Fließrate oder Tensidkonzentration verursacht. Wahrscheinlicher ist, dass eine unregelmäßige Packung und Lufteinschlüsse in der Säule ursächlich waren. %Ergebnisse Grenzflächentest Tracer @@ -40,7 +40,7 @@ \end{figure} -In Abbildung \ref{fingering_mob} ist außerdem in der Säule rechts ($34$) zu sehen, wie die Emulsion absinkt, das heißt, vertikal mobilisiert wird. +In Abbildung \ref{fingering_mob} ist außerdem in der Säule rechts (34) zu sehen, wie die Emulsion absinkt, das heißt, vertikal mobilisiert wird. Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und NAPL so klein wird, dass sich die beiden Phasen unabhängig ineinander bewegen können. Je nach dem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase mit der Strömung, oder aber er sinkt nach unten ab. % Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. -Mobilisierung trat im Mittelsand bei einigen Säulen auf. Im Feinsand wurde sie nur bei einer Säule ($52$) beobachtet, als der Fluss vorübergehend unterbrochen war. Aufgrund der größeren Poren sind die Kapillarkräfte im Mittelsand geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number}) geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder Grenzflächenspannung, das Mobilisationsrisiko zu minimieren. Siehe hierzu Kapitel \ref{nt}\\ +Mobilisierung trat im Mittelsand bei einigen Säulen auf. Im Feinsand wurde sie nur bei einer Säule (52) beobachtet, als der Fluss vorübergehend unterbrochen war. Aufgrund der größeren Poren sind die Kapillarkräfte im Mittelsand geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number}) geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder Grenzflächenspannung, das Mobilisationsrisiko zu minimieren. Siehe hierzu Kapitel \ref{nt}\\ \begin{figure} @@ -81,5 +81,5 @@ \begin{figure} \includegraphics{120620_col7+8} -\caption{Säulenversuche bei $2$\% Tensid und einer Fließrate von $1$ ml/min} +\caption{Säulenversuche bei 2\% Tensid und einer Fließrate von 1 ml/min} \label{7+8} \end{figure} @@ -87,5 +87,5 @@ \begin{figure} \includegraphics{120605_col9} -\caption{Säulenversuche bei $1$\% Tensid und einer Fließrate von $1$ ml/min} +\caption{Säulenversuche bei 1\% Tensid und einer Fließrate von 1 ml/min} \label{9} \end{figure} @@ -93,5 +93,5 @@ \begin{figure} \includegraphics{120605_col10+12} -\caption{Säulenversuche bei $1$\% Tensid und einer Fließrate von $0,5$ ml/min} +\caption{Säulenversuche bei 1\% Tensid und einer Fließrate von 0,5 ml/min} \label{10+12} \end{figure} @@ -100,5 +100,5 @@ -Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen 29-34) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid zur Sanierung verwendet und eine Fließrate von 1ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen 35-38), der mit einer Fließrate von ebenfalls 1ml/min, aber mit einer nur einprozentigen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von 0,5ml/min durchgeführt wurden. +Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen 29-34) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid zur Sanierung verwendet und eine Fließrate von 1 ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen 35-38), der mit einer Fließrate von ebenfalls 1 ml/min, aber mit einer nur einprozentigen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von 0,5 ml/min durchgeführt wurden. @@ -114,14 +114,14 @@ \subsubsection{Konzentration CS$_2$} -Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben von Säule 35. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26g/L und 7g/L). Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ sind hier nicht mehr wesentlich erhöht (für die abgebildete Reihe 2g/L). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6g/L). +Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben von Säule 35. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26 g/L und 7 g/L). Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ sind hier nicht mehr wesentlich erhöht (für die abgebildete Reihe 2 g/L). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6 g/L). \begin{figure} \includegraphics[width=\textwidth]{col35} -\caption{Abgefüllte Proben von Säule $35$} +\caption{Abgefüllte Proben vom Versuch in Feinsand bei 1\% Tensid und einer Fließrate von 1 ml/min} \label{pic:abgefuellt} \end{figure} -Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei $240$-$270$g/L im Feinsand und bei $160$-$210$g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von einem auf zwei Prozent führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1ml/min (Abbildung \ref{7+8}) und im Mittelsand bei 1\% und 0,5ml/min (Abbildung \ref{10+12}) gefunden. +Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von einem auf zwei Prozent führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1 ml/min (Abbildung \ref{7+8}) und im Mittelsand bei 1\% und 0,5 ml/min (Abbildung \ref{10+12}) gefunden. @@ -129,5 +129,5 @@ Im Mittelsand dagegen war die ausgetragene Masse deutlich geringer.\\ %Wie wirkt sich die unterschiedliche Initialsättigung auf den Masseaustrag aus, wie wahrscheinlich stimmen die Inis??? Haut das tatsächlich hin mit dem V_w=V_cs2??? Differenzen durch Inhomogenitäten und luft in der Säule berücksichtigen -Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als $50$g/L erreicht. Konzentrationen von $200$g DNAPL wurden erst mit $2,5\%$ Tensid erreicht (vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}). +Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als 50 g/L erreicht. Konzentrationen von 200 g DNAPL wurden erst mit 2,5\% Tensid erreicht (vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}). Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei einzelnen früheren Bachversuchen beobachteter Effekt aufgetreten sein: Dort hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. Eine weitere mögliche Erklärung ist die Stabilisierung durch Feststoffpartikel (Pickering-Emulsion vgl. Batchversuche Kapitel \ref{Einfuehrung Batch}). @@ -136,12 +136,12 @@ -\subsection{Wiederfindungsrate} +\subsection{Wiederfindung} -Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_{2}$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Sanierungsrate von 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung. +Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_2$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Wiederfindung von 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung. \subsection{Dichte} -Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen. Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei 1,08g/ml für Feinsand und 0,6g/ml im Mittelsand. +Die Dichte war nur für die wenigen Proben erhöht, die eine sehr hohe Konzentration an gelöstem DNAPL aufwiesen. Für alle weiteren Werte entsprach die Dichte in etwa der von Wasser. Die Maxima lagen bei 1,08 g/ml für Feinsand und 0, 6 g/ml im Mittelsand. @@ -156,13 +156,13 @@ Aufgrund von Problemen bei der Kalibrierung der Druckaufnehmer liegen nur für einen Teil der Versuche Druckwerte vor, welche durch unterschiedliche Kalibrierung auch nicht unmittelbar zu vergleichen sind. -Bezugsgröße muss der Relativdruck sein, der sich bei Wasserspülung vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. %Das sollt ich vielleicht noch ausprobieren, hab ich da Druckwerte für Wasser??? Nein, für Col10 nur Wasser nach Sanierung... -Für die beiden letzten Versuche sind Druckverlauf und daraus errechnete Permeabilität in den Abbildungen \ref{pic:pd10} und \ref{pic:pd12} grafisch dargestellt. -Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Tendsidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an. +Bezugsgröße muss der Differenzdruck sein, der sich bei Wasserspülung vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. %Das sollt ich vielleicht noch ausprobieren, hab ich da Druckwerte für Wasser??? Nein, für Col10 nur Wasser nach Sanierung... +Für die beiden letzten Versuche sind Druckverlauf und daraus errechnete Permeabilität in den Abbildungen \ref{pic:pd10} und \ref{pic:pd12} grafisch dargestellt. +Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Tensidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an. Der gemessene Differenzdruck bei Säule 46 (siehe Abbildung \ref{pic:pd10} blieb über die gesamte Sanierungsdauer konstant. Hier liegt ein Messfehler vor, vermutlich verursacht durch Luftblasen in den Druckleitungen, sodas eine sinnvolle Auswertung nicht möglich ist. \begin{figure} \centering -\includegraphics[scale=0.9]{col10_pd} -\caption{Verlauf von Relativdruck und Permeabilität über die Sanierung der Säulen 43 bis 45} +\includegraphics[scale=1]{col10_pd} +\caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 43 bis 45} \label{pic:pd10} \end{figure} @@ -170,6 +170,6 @@ \begin{figure} \centering -\includegraphics[scale=0.9]{col12_pd} -\caption{Verlauf von Relativdruck und Permeabilität über die Sanierung der Säulen 51 bis 54} +\includegraphics[scale=1]{col12_pd} +\caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 51 bis 54} \label{pic:pd12} \end{figure} @@ -179,5 +179,5 @@ Für die Berechnung der Trapping Number stellte sich das Problem, dass die Grenzflächenspannung nicht mittels eines Tropfenvolumentensiometers messbar war. Die Abschätzung nach Antonow über die Oberflächenspannung der leichten Phase und des reinem Schwefelkohlenstoffs erwies sich als unzureichend, da die so bestimmten Werte deutlich zu hoch lagen. -Mit dieser Berechnungsart wurden Grenzflächenminima von $3$ mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein, da Mobilisierung beobachtet wurde, welche in der Regel erst bei deutlich kleineren Werten auftritt. +Mit dieser Berechnungsart wurden Grenzflächenminima von 3 mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein, da Mobilisierung beobachtet wurde, welche in der Regel erst bei deutlich kleineren Werten auftritt. %Noch mal nachrecherchieren ab wann es standartmäßig zu Mobilisierung kommt. childs findet 3,92mN/m groß.