Show
Ignore:
Timestamp:
07/13/12 10:32:50 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Einfuehrung_Batch.tex

    r211 r213  
    66 
    77Ein Tensid, das für alle zu emulgierenden Chemikalien und unabhängig von Randbedingungen die optimale Wirkung zeigt gibt es nicht. Die emulgierende Wirkung hängt unter anderem ab von der Art der zwei nicht mischbaren Phasen und  der Konzentration des eingesetzten Emulgators. Daneben  sind zumeist auch der Emulsionstyp, die Schaumentwicklung, die zeitliche Stabilität der Emulsion und die Querempfindlichkeit des Systems auf physikalische und chemische Einflüsse relevant. 
    8  Mollet \cite{Mollet.2000} beschreibt  allgemeine Richtlinien, die bei der Auswahl eines Tensides hilfreich sein können:  
     8 \citet{Mollet.2000} beschreibt  allgemeine Richtlinien, die bei der Auswahl eines Tensides hilfreich sein können:  
    99 
    1010 
     
    3333 
    3434Wie gut ein Tensid in Wasser bzw. Öl gelöst werden kann, wird häufig über die Hydrophilic-Lipophilic-Balance (HLB-Wert) ausgedrückt.  
    35 Ein bestimmter Stoff lässt sich nur in einem abgesteckten  HLB-Bereich emulgieren. Der optimale HLB lässt sich am effektivsten durch Mischen vom  lipophilem und hydrophilem Emulgator der selben chemischen Klasse finden. Ein Beispiel hierfür wären Span (Sorbitanfettsäureester) und Tween (Polysorbate: mit Polyethylenglycol veretherte Spans). \cite{Mollet.2000}. 
     35Ein bestimmter Stoff lässt sich nur in einem abgesteckten  HLB-Bereich emulgieren. Der optimale HLB lässt sich am effektivsten durch Mischen vom  lipophilem und hydrophilem Emulgator der selben chemischen Klasse finden. Ein Beispiel hierfür wären Span (Sorbitanfettsäureester) und Tween (Polysorbate: mit Polyethylenglycol veretherte Spans). \citep{Mollet.2000}. 
    3636 %Eine Übersicht über Mischungen mit unterschiedlicher Zusammensetzung und dem resultierenden HLB-Wert gibt Tabelle %2.6 Mollet. 
    3737Für ionische Tenside wird der HLB oft vom Hersteller angegeben. Ist der HLB-Wert eines Tensides nicht bekannt, lässt er sich zum Beispiel mit der Inkrementmethode nach Davies abschätzen: ${HLB = 7 + \sum H + \sum L}$ 
     
    3939 
    4040 
    41 Hier ist $H$ der spezifische Wert der hydrophilen Gruppen und $L$ der spezifische Wert der lipophilen Gruppen. Tabelle \ref{tab:H-L-Werte} führt die H- und L-Werte für häufig vorkommende Gruppen auf. Die Berechnung nach Davies bietet den Vorteil, dass sie sowohl für ionische, wie für nichtionische Tenside gilt und die Stärke der durch die Gruppen ausgelösten Wechselwirkungen berücksichtigt wird. Nach dieser Berechnungsmethode liegen die HLB-Werte von ionischen Tensiden über $20$. Vgl. \cite{Mollet.2000}. HLB-Werte die klassisch nach Griffin berechnet wurden, liegen stets zwischen $1$ und $20$. Diese Methode gilt jedoch nicht für ionische Tenside. \\ 
     41Hier ist $H$ der spezifische Wert der hydrophilen Gruppen und $L$ der spezifische Wert der lipophilen Gruppen. Tabelle \ref{tab:H-L-Werte} führt die H- und L-Werte für häufig vorkommende Gruppen auf. Die Berechnung nach Davies bietet den Vorteil, dass sie sowohl für ionische, wie für nichtionische Tenside gilt und die Stärke der durch die Gruppen ausgelösten Wechselwirkungen berücksichtigt wird. Nach dieser Berechnungsmethode liegen die HLB-Werte von ionischen Tensiden über 20. \citep{Mollet.2000}. HLB-Werte die klassisch nach Griffin berechnet wurden, liegen stets zwischen 1 und 20. Diese Methode ist jedoch nicht anwendbar für ionische Tenside. \\ 
    4242 
    4343\begin{table}[h] 
    44 \caption{H- und L-Werte für Inkrementberechnung des HLB-Wertes; entnommen aus \cite{Mollet.2000} } 
     44\caption{H- und L-Werte für Inkrementberechnung des HLB-Wertes; entnommen aus \citep{Mollet.2000} } 
    4545\vspace{1cm} 
    4646\begin{tabular}{|l|c|l|c|} \hline 
     
    6363 
    6464Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle.  Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der Selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an verschiedene Tenside mit gleichem HLB-Wert zu untersuchen, bzw. diesen gegenenfalls einzustellen. \\ 
    65 Des weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie ist  das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden. \cite{Dorfler.2002}.%Dörfler S.485 
     65Des weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie ist  das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden. \citep{Dorfler.2002}.%Dörfler S.485 
    6666\\ 
    6767 
    6868Die Stabilität von Emulsionen hängt wesentlich davon ab, wie stark die anziehenden und abstoßenden Kräfte im Grenzschichtfilm sind. Hilfreich ist häufig eine Mischung aus öl- und wasserlöslichen Tensiden, da durch die zwischengelagerten öl-löslichen Tenside die Abstoßung der polaren Kopfgruppen der wasserlöslichen Tenside reduziert wird und somit die Packungsdichte steigt.  
    69 Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei  Polymeren, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreiten der Fall. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in  der Regel auch eine erhöhte Viskosität.  \cite{Mollet.2000}. 
    70 Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale. \cite{Dorfler.2002}. %Dörfler S.522, 523  
     69Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei  Polymeren, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreiten der Fall. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in  der Regel auch eine erhöhte Viskosität.  \citep{Mollet.2000}. 
     70Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale. \citep{Dorfler.2002}. %Dörfler S.522, 523  
    7171 
    7272Weiter Stabilitätsfördernd wirkt sich auch die Erhöhung der Viskosität aus. Daher sind höher konzentrierte Emulsionen in der Regel stabiler als verdünnte. Die Viskosität lässt sich aber auch durch Zugabe von Verdickungsmittel erreichen. 
    73 Üblich sind nach Mollet  \cite{Mollet.2000} Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate. %Mollet S.85 
    74 Stabilisatoren, die nicht in die innere Phase eindringen, aber die die Emulsionströpfchen umhüllen und in Schwebe halten, nennt man Schutzkolloide.\\ 
     73Üblich sind nach \citet{Mollet.2000} Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate. %Mollet S.85 
     74Solche Stabilisatoren, die nicht in die innere Phase eindringen, aber die die Emulsionströpfchen umhüllen und in Schwebe halten, nennt man auch Schutzkolloide.\\ 
    7575 
    7676Die höchste Stabilität wird in Mikroemulsionen erreicht, da diese definitionsgemäß thermodynamisch stabil sind. 
    77 Mikroemulsionen lassen sich nach folgenden Kriterien erkennen \cite{Dorfler.2002}
     77Mikroemulsionen lassen sich laut \citet{Dorfler.2002} nach folgenden Kriterien erkennen
    7878\begin{itemize} 
    7979\item{Spontane Bildung} 
     
    8989Wie bei Makroemulsionen können auch bei Mikroemulsionen weitere Unterscheidungen vorgenommen werden. Zum einen ist dies die Unterscheidung in O/W- und W/O-Mikroemulsion. 
    9090Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein quasiternäres System vereinfachen. 
    91 Dörfler \cite{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematisch die Bildung  von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. 
     91 \citet{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematisch die Bildung  von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. 
    9292Demnach gibt es für die Bildung von Mikroemulsion zwei interessante Bereiche im ternären Phasendiagramm. 
    9393\mbox{Bereich 1}: Hier liegt molekular gelöstes Tensid in Wasser unterhalb der CMC vor. Unterhalb der kritischen Konzentration ist die Solubilisierung von Cotensid gering, steigt aber bei Überschreiten der CMC (ck) sprunghaft an. 
     
    9696\begin{figure} 
    9797\includegraphics[width=\textwidth]{Mizellgebiete.png} 
    98 \caption{links: Konzentrationsgebiete von Mizellen ($1$) und gequollenen inversen Mizellen ($2$) im ternären System Wasser-Tensid-Cotensid; rechts: Mikroemulsion im ternären System bei konstantem Ölgehalt, nach \cite{Dorfler.2002}} 
     98\caption{links: Konzentrationsgebiete von Mizellen ($1$) und gequollenen inversen Mizellen ($2$) im ternären System Wasser-Tensid-Cotensid; rechts: Mikroemulsion im ternären System bei konstantem Ölgehalt, nach \citet{Dorfler.2002}} 
    9999\label{pic:Mizellgebiete} 
    100100\end{figure} 
     
    105105In der Regel ist zur Herstellung einer Mikroemulsion die Anwesenheit eines stärker hydrophoben Cotensids nötig. %Mollet S.110 
    106106In Ausnahmefällen reicht die Anwesenheit eines einzigen Tensides aus um sehr niedrige Grenzflächenspannungen und damit 
    107 Mikroemulsionen zu erhalten. Möglich ist dies laut Mollet \cite{Mollet.2000} bei ionischen Tensiden mit zwei Kohlenwasserstoffketten 
     107Mikroemulsionen zu erhalten. Möglich ist dies laut \citet{Mollet.2000} bei ionischen Tensiden mit zwei Kohlenwasserstoffketten 
    108108%, zum Beispiel Ethyl-Hexyl-Sulfobernsteinsäure (Aerosol OT),  
    109109und bei nichtionischen Tensiden in einem engen Temperaturbereich. In diesem  
    110110Temperaturbereich entspricht die Öl-löslichkeit der Wasserlöslichkeit. %S.111, 112 
    111111Die Erkenntnissen aus Abbildung \ref{pic:Mizellgebiete} lassen darauf schliessen, dass es einfacher ist, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. 
    112 Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \cite{Mollet.2000}. 
     112Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \citep{Mollet.2000}. 
    113113 
    114114%Inversion von Emulsionen S.86-88 
     
    116116Das heißt eine bei niedriger Temperatur gebildete O/W-Emulsion kann durch Temperaturerhöhung zu einer W/O-Emulsion invertieren. Eine bei hoher Temperatur gebildete W/O-Emulsion kann durch Temperaturerniedrigung zu einer O/W-Emulsion invertieren. Die Temperatur bei der der Phasenübergang stattfindet wird Phaseninversionstemperatur (PIT) genannt.  
    117117Bei der PIT erreicht die Grenzflächenspannung ein Minimum. Daher können beim Emulgieren in diesem Temperaturbereich sehr kleine Tröpfchen gebildet werden. 
    118 Die Inversion lässt sich dokumentieren durch messen des elektrischen Wiederstandes, der gegen das Volumenverhältniss $V_W/V_O$ aufgetragen wird. Am Inversionspunkt sinkt der Wiederstand schlagartig ab. \cite{Dorfler.2002}.%Dörfler S.525, 526 
    119  
    120 Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar, vgl. Abbildung \ref{pic:binar}. Es wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen,  O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. \cite{Dorfler.2002}. 
     118Die Inversion lässt sich dokumentieren durch messen des elektrischen Wiederstandes, der gegen das Volumenverhältniss $V_W/V_O$ aufgetragen wird. Am Inversionspunkt sinkt der Wiederstand schlagartig ab. \citep{Dorfler.2002}.%Dörfler S.525, 526 
     119 
     120Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar, vgl. Abbildung \ref{pic:binar}. Es wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen,  O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. \citep{Dorfler.2002}. 
    121121 
    122122\begin{figure} 
    123123\includegraphics[width=\textwidth]{binar.png} 
    124 \caption{Schnitt durch ein Zustandsdiagramm Wasser-Öl-Niotensid; ($1$) einphasiges Gebiet; zweiphasige Gebiet, das Tensid ist hier in der wässrigen (2) bzw. in der öligen (2') Phase gelöst; x Molenbruch, T Temperatur; nach \cite{Dorfler.2002}} 
     124\caption{Schnitt durch ein Zustandsdiagramm Wasser-Öl-Niotensid; ($1$) einphasiges Gebiet; zweiphasige Gebiet, das Tensid ist hier in der wässrigen (2) bzw. in der öligen (2') Phase gelöst; x Molenbruch, T Temperatur; nach \citet{Dorfler.2002}} 
    125125\label{pic:binar} 
    126126\end{figure} 
     
    157157 
    158158Die Trapping Number beschreibt das Kräftegleichgewicht zwischen Kapillarkräften, die den NAPL in den Porenräumen festhalten, sowie den viskosen und  den Gravitationskräften, die den Weitertransport fördern. 
    159 Sie ist  in Gleichung \ref{eqn:trapping number} definiert nach \cite{Childs.2004}.  
     159Sie ist  in Gleichung \ref{eqn:trapping number} definiert nach \citet{Childs.2004}.  
    160160Mithilfe der Trapping Number lässt sich eine Aussage darüber treffen, unter welchen Vorrausetzungen es zur Mobilisierung des DNAPLs kommt. Childs  definiert hierzu sogenannte Trapping Curves, wo die Residualsättigung gegen die Grenzflächenspannung für eine variable Viskosität aufgetragen wird. Es können aber auch andere Parameter variiert werden, wie Grenzflächenspannung oder Fließrate.  
    161161 
     
    165165\end{equation} 
    166166 
    167 Dabei ist $N_{Ca}$ die Kapillarzahl. Sie gibt das Verhältnis von Viskositätskräften zur Kapillarkräften an, wie in Gleichung \ref{eqn:capillary number} nach \cite{Childs.2004} dargestellt. 
    168 $N_B$ ist die Bondzahl. Sie drückt das Verhältnis von Auftriebs- zu Kapillarkräften aus, siehe Gleichung \ref{eqn:bond number} (nach \cite{Childs.2004}). Die oft großen Dichteunterschiede zwischen Öl- und Wasserphase werden durch sie berücksichtigt. 
     167Dabei ist $N_{Ca}$ die Kapillarzahl. Sie gibt das Verhältnis von Viskositätskräften zur Kapillarkräften an, wie in Gleichung \ref{eqn:capillary number} dargestellt. 
     168$N_B$ ist die Bondzahl. Sie drückt das Verhältnis von Auftriebs- zu Kapillarkräften aus, siehe Gleichung \ref{eqn:bond number}. Die oft großen Dichteunterschiede zwischen Öl- und Wasserphase werden durch sie berücksichtigt. 
    169169 
    170170\begin{equation} 
     
    193193\vspace{\baselineskip} 
    194194%Die Residualsättigung kann durch anpassen der Van-Genuchten-Gleichung und Einsetzen der Trapping Number bestimmt werden. 
    195 Ist die Grenzflächenspannung nicht bekannt, kann sie näherungsweise aus den Oberflächenspannungen der beiden Phasen nach der Antonow'schen Regel bestimmt werden, siehe Gleichung \ref{eqn:Antonow} \cite{Merkwitz.1997}. 
     195Ist die Grenzflächenspannung nicht bekannt, kann sie näherungsweise aus den Oberflächenspannungen der beiden Phasen nach der Antonow'schen Regel bestimmt werden, siehe Gleichung \ref{eqn:Antonow}. \citep{Merkwitz.1997}. 
    196196 
    197197\begin{equation} 
     
    200200\end{equation} 
    201201 
    202 Die Antonow'sche Gleichung berücksichtigt jedoch nur die Kräfte zwischen Flüssigphase der einzelnen Phasen und deren Dampfphase. Die Oberflächen werden als konstant und unabhängig von der jeweiligen Phase angenommen und die Wechselwirkungen zwischen den flüssigen Phasen werden nicht beachtet. Dort treten Dispersion, Polarität und Wasserstoffbrückenbindungen auf. Sollen die Grenzflächenspannungen zwischen Flüssigkeiten und Festkörpern berechnet werden ist zudem die Kenntnis des Kontaktwinkels nötig \cite{Kruss.2012}. %http://www.kruss.de/de/theorie/messungen/kontaktwinkel/einfuehrung.html 
     202Die Antonow'sche Gleichung berücksichtigt jedoch nur die Kräfte zwischen Flüssigphase der einzelnen Phasen und deren Dampfphase. Die Oberflächen werden als konstant und unabhängig von der jeweiligen Phase angenommen und die Wechselwirkungen zwischen den flüssigen Phasen werden nicht beachtet. Dort treten Dispersion, Polarität und Wasserstoffbrückenbindungen auf. Sollen die Grenzflächenspannungen zwischen Flüssigkeiten und Festkörpern berechnet werden ist zudem die Kenntnis des Kontaktwinkels nötig. \citep{Kruss.2012}. %http://www.kruss.de/de/theorie/messungen/kontaktwinkel/einfuehrung.html 
    203203Da die Anteile der Wechselwirkungskräfte nicht bekannt sind, soll hier dennoch mit der Näherung von Antonow gerechnet werden. Zu bedenken ist, dass die berechnete Grenzflächenspannung größer sein dürfte, als die tatsächliche Grenzflächenspannung.  
    204204