Show
Ignore:
Timestamp:
08/25/12 10:18:22 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Einfuehrung_Batch.tex

    r217 r218  
    6363 
    6464 
    65 Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle.  Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der Selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an verschiedene Tenside mit gleichem HLB-Wert zu untersuchen, bzw. diesen gegenenfalls einzustellen. \\ 
     65Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle.  Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der optimale HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an verschiedene Tenside mit gleichem HLB-Wert zu untersuchen, bzw. diesen gegenenfalls einzustellen. \\ 
    6666Des weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie ist  das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden. \citep{Dorfler.2002}%Dörfler S.485 
    6767\\ 
    6868 
    6969Die Stabilität von Emulsionen hängt wesentlich davon ab, wie stark die anziehenden und abstoßenden Kräfte im Grenzschichtfilm sind. Hilfreich ist häufig eine Mischung aus öl- und wasserlöslichen Tensiden, da durch die zwischengelagerten öl-löslichen Tenside die Abstoßung der polaren Kopfgruppen der wasserlöslichen Tenside reduziert wird und somit die Packungsdichte steigt.  
    70 Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei  Polymeren, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreiten der Fall. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in  der Regel auch eine erhöhte Viskosität.  \citep{Mollet.2000}. \\ 
     70Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei  Polymeren der Fall, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreitenl. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in  der Regel auch eine erhöhte Viskosität.  \citep{Mollet.2000}. \\ 
    7171Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale. \citep{Dorfler.2002} \\ 
    72 Weiter Stabilitätsfördernd wirkt sich auch die Erhöhung der Viskosität aus. Daher sind höher konzentrierte Emulsionen in der Regel stabiler als verdünnte. Die Viskosität lässt sich aber auch durch Zugabe von Verdickungsmittel erreichen. 
     72Weiter stabilitätsfördernd wirkt sich auch die Erhöhung der Viskosität aus. Daher sind höher konzentrierte Emulsionen in der Regel stabiler als verdünnte. Die Viskosität lässt sich aber auch durch Zugabe von Verdickungsmittel erreichen. 
    7373Üblich sind nach \citet{Mollet.2000} Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate. %Mollet S.85 
    7474Solche Stabilisatoren, die nicht in die innere Phase eindringen, aber die die Emulsionströpfchen umhüllen und in Schwebe halten, nennt man auch Schutzkolloide.\\ 
     
    108108%, zum Beispiel Ethyl-Hexyl-Sulfobernsteinsäure (Aerosol OT),  
    109109und bei nichtionischen Tensiden in einem engen Temperaturbereich. In diesem  
    110 Temperaturbereich entspricht die Öl-löslichkeit der Wasserlöslichkeit. %S.111, 112 
    111 Die Erkenntnissen aus Abbildung \ref{pic:Mizellgebiete} lassen darauf schliessen, dass es einfacher ist, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. 
     110Temperaturbereich entspricht die Öl-Löslichkeit der Wasserlöslichkeit. %S.111, 112 
     111Die in Abbildung \ref{pic:Mizellgebiete} dargestellten Zusammenhänge lassen darauf schliessen, dass es einfacher ist, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. 
    112112Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \citep{Mollet.2000}. 
    113113 
     
    118118Die Inversion lässt sich dokumentieren durch messen des elektrischen Wiederstandes, der gegen das Volumenverhältniss $V_W/V_O$ aufgetragen wird. Am Inversionspunkt sinkt der Wiederstand schlagartig ab. \citep{Dorfler.2002}.%Dörfler S.525, 526 
    119119 
    120 Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar, vgl. Abbildung \ref{pic:binar}. Es wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen,  O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. \citep{Dorfler.2002}. 
     120Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionischen Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar, vgl. Abbildung \ref{pic:binar}. Es wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen,  O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. \citep{Dorfler.2002}. 
    121121 
    122122\begin{figure} 
     
    129129\section{DNAPLs} 
    130130 
    131 DNAPLs zeichnen sich durch ihre spezifisch hohe Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften, sowie der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen einlagern. Man spricht dann von Plops. Diese treten vor allem im Grundwasserschwankungsbereich auf. Aus diesen Pools und Plops wird  kontinuierlich eine kleine Menge DNAPL gelöst und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit dieser Substanzen ist das verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar. Daher ist es erforderlich die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grundsätzliche Probleme. Zum einen liegt die DNAPL-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht, auf Grund der schlechten Löslichkeit von DNAPLs, häufig nicht aus um mit vertretbarem Zeit- und Energieaufwand eine vollständige Sanierung herbeizuführen. Daher ist es  nötig mit Additiven zu arbeiten, welche die Auflösung und den Abtransport des DNAPLs fördern. Das heißt es wird eine Spüllösung mit einem Lösungsvermittelndem Zusatz in den Boden injiziert, die den DNAPL löst und Stromabwärts wieder abgepumpt werden kann. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Möglich ist es aber auch, den DNAPL im Boden abzubauen, zum Beispiel durch einbringen starker Oxidationsmittel. 
    132  
    133 Tenside können auf zweierlei Arten den Austrag von DNAPLs fördern. Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL als zusammenhängende Phase, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser. Diese Methode gilt als sehr effizient, da die Gesamtmenge auf einmal transportiert wird und so nur ein bis zwei Porenvolumina Spüllösung benötigt werden. Die Mobilisierung birgt jedoch auch Gefahren. Aufgrund der einwirkenden Kräfte ist die frei bewegliche Schwerphase  hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, wenn die gravimetrischen Kräfte größer als die haltenden Kräfte werden. Ebenso besteht die Möglichkeit einer unerwünschten horizontalen Mobilisierung, bei der sich der DNAPL unabhängig von der Pumpströmung des Grundwassers bewegt. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht. Durch diesen Effekt kann die Löslichkeit um ein Vielfaches der ursprünglichen Löslichkeit gesteigert werden. Idealerweise bildet sich Mikroemulsion, die aufgrund ihrer Struktur und Eigenschaften wie eine reines  einphasiges Fluid behandelt werden kann, das heißt ein definiertes Fließverhalten aufweist. Diese Methode beansprucht mehr Zeit, da der DNAPL Schritt für Schritt gelöst wird, also mehrere Spülgänge notwendig sind. Die Effektivität im Vergleich zur Mobilisierung wird als geringer Eingestuft. Sie ist stark abhängig von der Art des DNAPL-Reservoirs, der Bodenart und -Struktur, sowie den Wechselwirkungen zwischen den flüssigen Phasen und mit der festen Phase
     131DNAPLs zeichnen sich durch ihre hohe spezifische Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften, sowie der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen einlagern. Man spricht dann von Blobs. Diese treten vor allem im Grundwasserschwankungsbereich auf. Aus diesen Pools und Blobs wird  kontinuierlich eine kleine Menge DNAPL gelöst und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit dieser Substanzen ist das verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar und hydraulische Sanierungsmaßnahmen entsprechend teuer. Daher ist es erforderlich die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grundsätzliche Probleme. Zum einen liegt die DNAPL-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht, auf Grund der schlechten Löslichkeit von DNAPLs, häufig nicht aus um mit vertretbarem Zeit- und Energieaufwand eine vollständige Sanierung herbeizuführen. Daher ist es  nötig mit Additiven zu arbeiten, welche die Auflösung und den Abtransport des DNAPLs fördern. Das heißt es wird eine Spüllösung mit einem Lösungsvermittelndem Zusatz in den Boden injiziert, die den DNAPL löst und Stromabwärts wieder abgepumpt werden kann. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Möglich ist es aber auch, den DNAPL im Boden abzubauen, zum Beispiel durch einbringen starker Oxidationsmittel. In der EU bzw. Deutschland gelten allerdings strenge Bestimmungen für das Einleiten von Stoffen in das Grundwasser. Genaueres regelt die Wasser-Rahmen-Richtlinie (WRRL, EU) und das Wasserhaushaltsgesetz (WHG), sowie die Grundwasserverordnung (GWV) und die Landeswassergesetze. Grundsätzlich ist die Einleitung nur zulässig "...wenn eine nachteilige Veränderung der Wasserbeschaffenheit nicht zu besorgen..." (WHG, §48). Aber auch die Entnahme von Grundwasser ist genehmigungspflichtig.  
     132 
     133Tenside können auf zweierlei Arten den Austrag von DNAPLs fördern. Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL als zusammenhängende Phase, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser. Diese Methode gilt als sehr effizient, da die Gesamtmenge auf einmal transportiert wird und so nur ein bis zwei Porenvolumina Spüllösung benötigt werden. Die Mobilisierung birgt jedoch auch Gefahren. Aufgrund der einwirkenden Kräfte ist die frei bewegliche Schwerphase  hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, wenn die gravimetrischen Kräfte größer als die haltenden Kräfte werden. Ebenso besteht die Möglichkeit einer unerwünschten horizontalen Mobilisierung, bei der sich der DNAPL unabhängig von der Pumpströmung des Grundwassers bewegt. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht. Durch diesen Effekt kann die Löslichkeit um ein Vielfaches der ursprünglichen Löslichkeit gesteigert werden. Idealerweise bildet sich Mikroemulsion, die aufgrund ihrer Struktur und Eigenschaften wie eine reines  einphasiges Fluid behandelt werden kann, das heißt ein definiertes Fließverhalten aufweist. Diese Methode beansprucht mehr Zeit, da der DNAPL Schritt für Schritt gelöst wird, also mehrere Porenvolumina zu seiner vollständigen Entfernung notwendig sind. Die Effektivität im Vergleich zur Mobilisierung ist somit deutlich geringer. Sie ist stark abhängig von der Verteilung des DNAPLs im Untergrund, die maßgeblich von der Bodenart und -Struktur, sowie den Wechselwirkungen der flüssigen Phasen untereinander und mit der festen Phase beinflusst wird
    134134 
    135135 
    136136\section {Batchtests} 
    137137 
    138 Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehendem Ausschluss äußerer Einflüsse miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch einzeln variieren, bei konstanten anderen Bedingungen. Im Rahmen von Vorversuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tenidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen der vorliegenden Arbeit wurden die Ergebnisse der vorhergehenden Versuche überprüft und erweitert. Es wurden  Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizell Concentration), sowie über eine große Konzentrationsspanne, mit Tensidgehalten von bis zu $10$ \%, durchgeführt. Im weiteren wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig  effektiver sind als ein Einzeltensid.  
     138Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehendem Ausschluss äußerer Einflüsse miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch gezielt einzeln variieren, wobei andere Einflussgrößen konstant gehalten werden. In vorangegangenen Versuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tenidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen der vorliegenden Arbeit wurden die Ergebnisse der vorhergehenden Versuche überprüft und erweitert. Es wurden  Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizelle Concentration), sowie über eine große Konzentrationsspanne, mit Tensidgehalten von bis zu $10$ \%, durchgeführt. Im weiteren wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig  effektiver sind als ein Einzeltensid.  
    139139 
    140140 
     
    142142\label{sec:Einfuehrung Saeulen} 
    143143 
    144 Tensidlösungen können unterstützend bei der Sanierung in der gesättigten Grundwasserzone eingesetzt werden. Hierzu wird die Spüllösung über einen Injektionsbrunnen in den Boden eingebracht und  breitet sich dort im Grundwasserstrom aus. Dabei wird der vorliegende, schlecht wasserlösliche Kontaminant solubilisiert oder mobilisiert und kann dann über einen Extraktionsbrunnen aus dem Grundwasser entfernt werden. Solubilisierung bedeutet, dass sich die Wasserlöslichkeit des NAPLs (Non aqueos phase liquids) erhöht. Dies beruht auf der Einlagerung in Mizellen: Die Tensidmoleküle lagern sich mit ihrem hydrophoben Ende um die NAPL-Moleküle an und bringen diese, bedingt durch die nun nach außen zeigenden hydrophilen Kopfgruppen, im Wasser in Lösung. Mobilisierung beruht auf der Reduzierung der Grenz- und Oberflächenspannung. Das heißt unter anderem, dass die Affinität, sich an unpolaren Oberflächen anzulagern, entfällt und die freie Beweglichkeit in der wässrigen Phase möglich wird. Die Zusammenhängende NAPL-Phase folgt einer Tensidfront in der Strömung. Mobilisierung ist das weit effektivere Verfahren. Jedoch ist hier ein System mit extrem niedriger Grenzflächenspannung nötig, welches sehr aufwändig zu erstellen ist und es besteht  die Gefahr einer unerwünschten vertikalen Mobilisierung, also ein Abgleiten in tiefere Bodenschichten. Die mobilisierte Phase ist daher schlecht hydraulisch kontrollierbar. Zwischen der Mobilisierung und Solubilisierung besteht ein fließender Übergang. Dadurch können auch durch Solubilisierungskapazitäten durch reine Solubilisierung erzielt werden, allerdings steigt damit auch wieder das Risiko einer unerwünschten Mobilisierung. 
     144Tensidlösungen können unterstützend bei der Sanierung in der gesättigten Grundwasserzone eingesetzt werden. Hierzu wird die Spüllösung über einen Injektionsbrunnen in den Boden eingebracht und  breitet sich dort im Grundwasserstrom aus. Dabei wird der vorliegende, schlecht wasserlösliche Kontaminant solubilisiert oder mobilisiert und kann dann über einen Extraktionsbrunnen aus dem Grundwasser entfernt werden. Solubilisierung bedeutet, dass sich die Wasserlöslichkeit des DNAPLs  erhöht. Dies beruht auf der Einlagerung in Mizellen: Die Tensidmoleküle lagern sich mit ihrem hydrophoben Ende um die DNAPL-Moleküle an und bringen diese, bedingt durch die nun nach außen zeigenden hydrophilen Kopfgruppen, im Wasser in Lösung. Mobilisierung beruht auf der Reduzierung der Grenz- und Oberflächenspannung. Das heißt unter anderem, dass die Affinität, sich an unpolaren Oberflächen anzulagern, entfällt und die freie Beweglichkeit in der wässrigen Phase möglich wird. Die zusammenhängende DNAPL-Phase wird vor einer Tensidfront hergeschoben. Ein Effekt der meist auch bei der Solubilisierung beobachtet wird, hier aber unerwünscht ist. Mobilisierung ist das weit effektivere Verfahren. Jedoch ist hier ein System mit extrem niedriger Grenzflächenspannung nötig, welches sehr aufwändig zu erstellen ist und es besteht  die Gefahr einer unerwünschten vertikalen Mobilisierung, also ein Abgleiten in tiefere Bodenschichten. Die mobilisierte Phase ist daher schlecht hydraulisch kontrollierbar. Zwischen der Mobilisierung und Solubilisierung besteht ein fließender Übergang. Dadurch können auch hohe Austragsraten durch reine Solubilisierung erzielt werden, allerdings steigt damit auch wieder das Risiko einer unerwünschten Mobilisierung. 
    145145%Im untersuchten Fall wurde versucht ein Mikroemulsionssystem für die Solubilisierung zu entwickeln um die Vorteile (hohe Effizienz, Stabilität) ohne die genannten Nachteile nutzen zu können. 
    146146 
     
    153153Hier soll das grundsätzliche Vorgehen zur Bestimmung des Mobilisierungsrisikos,  in Abhängigkeit von den auf das Fluid einwirkenden Kräfte, beschrieben werden, um die Prozesse in den Säulen besser zu verstehen. 
    154154 
    155 \subsection{Trapping Number
     155\subsection{Dimensionslose Kennzahlen
    156156\label{nt} 
    157157 
    158 Die Trapping Number beschreibt das Kräftegleichgewicht zwischen Kapillarkräften, die den NAPL in den Porenräumen festhalten, sowie den viskosen und  den Gravitationskräften, die den Weitertransport fördern. 
     158Die Kapillarzahl $N_{Ca}$ gibt das Verhältnis von Viskositätskräften zur Kapillarkräften an, wie in Gleichung \ref{eqn:capillary number} dargestellt. 
     159 
     160\begin{equation} 
     161N_{Ca}=\frac{q_a\mu_a}{\gamma} 
     162\label{eqn:capillary number} 
     163\end{equation} 
     164 
     165Die Bondzahl $N_B$ drückt das Verhältnis von Auftriebs- zu Kapillarkräften aus, siehe Gleichung \ref{eqn:bond number}. Die oft großen Dichteunterschiede zwischen Öl- und Wasserphase werden durch sie berücksichtigt. 
     166 
     167\begin{equation} 
     168N_B=\frac{\Delta \rho g k k_{ra}}{\gamma} 
     169\label{eqn:bond number} 
     170\end{equation} 
     171 
     172Die Trapping Number $N_{T}$beschreibt das Kräftegleichgewicht zwischen Kapillarkräften, die den DNAPL in den Porenräumen festhalten, sowie den viskosen und  den Gravitationskräften, die den Weitertransport fördern. 
    159173Sie ist  in Gleichung \ref{eqn:trapping number} definiert nach \citet{Childs.2004}.  
    160 Mithilfe der Trapping Number lässt sich eine Aussage darüber treffen, unter welchen Vorrausetzungen es zur Mobilisierung des DNAPLs kommt. Childs definiert hierzu sogenannte Trapping Curves, wo die Residualsättigung gegen die Grenzflächenspannung für eine variable Viskosität aufgetragen wird. Es können aber auch andere Parameter variiert werden, wie Grenzflächenspannung oder Fließrate.  
     174Mithilfe der Trapping Number lässt sich eine Aussage darüber treffen, unter welchen Vorrausetzungen es zur Mobilisierung des DNAPLs kommt. Childs definiert hierzu sogenannte Trapping Curves, wo die Residualsättigung gegen die Grenzflächenspannung für eine variable Viskosität aufgetragen wird. Es können aber auch andere unabhängige Parameter definiert werden, wie Grenzflächenspannung oder Fließrate.  
    161175 
    162176\begin{equation} 
     
    165179\end{equation} 
    166180 
    167 Dabei ist $N_{Ca}$ die Kapillarzahl. Sie gibt das Verhältnis von Viskositätskräften zur Kapillarkräften an, wie in Gleichung \ref{eqn:capillary number} dargestellt. 
    168 $N_B$ ist die Bondzahl. Sie drückt das Verhältnis von Auftriebs- zu Kapillarkräften aus, siehe Gleichung \ref{eqn:bond number}. Die oft großen Dichteunterschiede zwischen Öl- und Wasserphase werden durch sie berücksichtigt. 
    169  
    170 \begin{equation} 
    171 N_{Ca}=\frac{q_a\mu_a}{\gamma} 
    172 \label{eqn:capillary number} 
    173 \end{equation} 
    174  
    175 \begin{equation} 
    176 N_B=\frac{\Delta \rho g k k_{ra}}{\gamma} 
    177 \label{eqn:bond number} 
    178 \end{equation} 
    179181 
    180182\begin{tabular}{lcp{11cm}}