Index: /diplomarbeit/Einfuehrung_Batch.tex =================================================================== --- /diplomarbeit/Einfuehrung_Batch.tex (revision 228) +++ /diplomarbeit/Einfuehrung_Batch.tex (revision 229) @@ -33,11 +33,8 @@ Wie gut ein Tensid in Wasser bzw. Öl gelöst werden kann, wird häufig über die Hydrophilic-Lipophilic-Balance (HLB-Wert) ausgedrückt. -Ein bestimmter Stoff lässt sich nur in einem abgesteckten HLB-Bereich emulgieren. Der optimale HLB lässt sich am effektivsten durch Mischen vom lipophilem und hydrophilem Emulgator der selben chemischen Klasse finden. Ein Beispiel hierfür wären Span (Sorbitanfettsäureester) und Tween (Polysorbate: mit Polyethylenglycol veretherte Spans) \citep{Mollet.2000}. +Ein bestimmter Stoff lässt sich nur in einem eingegrenzten HLB-Bereich emulgieren. Der optimale HLB lässt sich am effektivsten durch Mischen vom lipophilem und hydrophilem Emulgator der selben chemischen Klasse finden. Ein Beispiel hierfür wären Span (Sorbitanfettsäureester) und Tween (Polysorbate: mit Polyethylenglycol veretherte Spans) \citep{Mollet.2000}. %Eine Übersicht über Mischungen mit unterschiedlicher Zusammensetzung und dem resultierenden HLB-Wert gibt Tabelle %2.6 Mollet. Für ionische Tenside wird der HLB oft vom Hersteller angegeben. Ist der HLB-Wert eines Tensides nicht bekannt, lässt er sich zum Beispiel mit der Inkrementmethode nach Davies abschätzen: ${HLB = 7 + \sum H + \sum L}$ - - - -Hier ist $H$ der spezifische Wert der hydrophilen Gruppen und $L$ der spezifische Wert der lipophilen Gruppen. Tabelle \ref{tab:H-L-Werte} führt die H- und L-Werte für häufig vorkommende Gruppen auf. Die Berechnung nach Davies bietet den Vorteil, dass sie sowohl für ionische, wie für nichtionische Tenside gilt und die Stärke der durch die Gruppen ausgelösten Wechselwirkungen berücksichtigt wird. Nach dieser Berechnungsmethode liegen die HLB-Werte von ionischen Tensiden über 20 \citep{Mollet.2000}. HLB-Werte die klassisch nach Griffin berechnet wurden, liegen stets zwischen 1 und 20. Diese Methode ist jedoch nicht anwendbar für ionische Tenside. \\ +Hier ist $H$ der spezifische Wert der hydrophilen Gruppen und $L$ der spezifische Wert der lipophilen Gruppen. Tabelle \ref{tab:H-L-Werte} führt die H- und L-Werte für häufig vorkommende Gruppen auf. Die Berechnung nach Davies bietet den Vorteil, dass sie sowohl für ionische, wie für nichtionische Tenside gilt und die Stärke der durch die Gruppen ausgelösten Wechselwirkungen berücksichtigt wird. Nach dieser Berechnungsmethode liegen die HLB-Werte von ionischen Tensiden über 20 \citep{Mollet.2000}. HLB-Werte die klassisch nach Griffin berechnet wurden, liegen stets zwischen 1 und 20. Diese Methode ist jedoch nicht anwendbar für ionische Tenside. \begin{table}[htbp] @@ -62,5 +59,4 @@ - Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle. Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der optimale HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an, verschiedene Tenside mit gleichem HLB-Wert zu untersuchen bzw. diesen gegenenfalls einzustellen. \\ Des Weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie ist das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden \citep{Dorfler.2002}.%Dörfler S.485 @@ -68,8 +64,8 @@ Die Stabilität von Emulsionen hängt wesentlich davon ab, wie stark die anziehenden und abstoßenden Kräfte im Grenzschichtfilm sind. Hilfreich ist häufig eine Mischung aus öl- und wasserlöslichen Tensiden, da durch die zwischengelagerten öl-löslichen Tenside die Abstoßung der polaren Kopfgruppen der wasserlöslichen Tenside reduziert wird und somit die Packungsdichte steigt. -Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei Polymeren der Fall, die die Eigenschaft haben auf der Wasseroberfläche zu spreiten, sprich sich zu einem dünnen Film auszubreiten. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in der Regel auch eine erhöhte Viskosität \citep{Mollet.2000}. \\ +Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei Polymeren der Fall, die die Eigenschaft haben auf der Wasseroberfläche zu spreiten, sprich sich zu einem dünnen Film auszubreiten. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität, aber sie verursachen in der Regel auch eine erhöhte Viskosität \citep{Mollet.2000}. \\ Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale \citep{Dorfler.2002}. \\ Weiter stabilitätsfördernd wirkt sich auch die Erhöhung der Viskosität aus. Daher sind höher konzentrierte Emulsionen in der Regel stabiler als verdünnte. Die Viskosität lässt sich aber auch durch Zugabe von Verdickungsmittel erreichen. -Üblich sind nach \citet{Mollet.2000} Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate. %Mollet S.85 +%Üblich sind nach \citet{Mollet.2000} Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate. %Mollet S.85 Solche Stabilisatoren, die nicht in die innere Phase eindringen, aber die die Emulsionströpfchen umhüllen und in Schwebe halten, nennt man auch Schutzkolloide.\\ @@ -88,6 +84,5 @@ Wie bei Makroemulsionen können auch bei Mikroemulsionen weitere Unterscheidungen vorgenommen werden. Zum einen ist dies die Unterscheidung in O/W- und W/O-Mikroemulsion. -Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein quasiternäres System vereinfachen. - \citet{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematisch die Bildung von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. +Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein quasiternäres System vereinfachen. \citet{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematisch die Bildung von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. Demnach gibt es für die Bildung von Mikroemulsion zwei interessante Bereiche im ternären Phasendiagramm. \mbox{Bereich 1}: Hier liegt molekular gelöstes Tensid in Wasser unterhalb der CMC vor. Unterhalb der kritischen Konzentration ist die Solubilisierung von Cotensid gering, steigt aber bei Überschreiten der CMC (ck) sprunghaft an. @@ -129,12 +124,13 @@ \section{Verhalten von DNAPLs im Untergrund} -DNAPLs zeichnen sich durch ihre spezifisch hohe Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, getrieben durch gravitive Kräfte im Boden bzw. Grundwasser nach unten absinken. Dieses Absinken wird gestoppt, wenn der DNAPL auf undurchlässige Schichten trifft, wo er sich bevorzugt in "Pools" zusammenlagert, oder wenn der Zufluss von DNAPL gestoppt wird und sich ein Gleichgewichtszustand zwischen gravitativen und kapillaren Kräften einstellt. In diesem Fall liegt der DNAPL in residualer Sättigung in Form von sogenannten "Blobs" vor. +DNAPLs zeichnen sich durch ihre spezifisch hohe Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, getrieben durch gravitive Kräfte im Boden bzw. Grundwasser nach unten absinken. Dieses Absinken wird gestoppt, wenn der DNAPL auf undurchlässige Schichten trifft, wo er sich bevorzugt in Pools zusammenlagert, oder wenn der Zufluss von DNAPL gestoppt wird und sich ein Gleichgewichtszustand zwischen gravitativen und kapillaren Kräften einstellt. In diesem Fall liegt der DNAPL in residualer Sättigung in Form von sogenannten Blobs vor. %Abhängig von den Stoffeigenschaften, sowie der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen einlagern. Man spricht dann von Blobs. Diese treten vor allem im Grundwasserschwankungsbereich auf. Aus diesen Pools und Blobs wird kontinuierlich eine kleine Menge DNAPL gelöst und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit dieser Substanzen ist das verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar und hydraulische Sanierungsmaßnahmen müssen ergriffen werden. -Bei deren Durchführung stellen sich grundsätzliche Probleme. Zum einen liegt die DNAPL-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht auf Grund der schlechten Löslichkeit von DNAPLs häufig nicht aus, um mit vertretbarem Zeit- und Energieaufwand eine vollständige Sanierung herbeizuführen. Daher ist es nötig mit Additiven zu arbeiten, welche die Auflösung und den Abtransport des DNAPLs fördern. Das heißt, es wird eine Spüllösung mit einem lösungsvermittelnden Zusatz in den Boden injiziert, die den DNAPL löst und stromabwärts wieder abgepumpt werden kann. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Möglich ist es aber auch, den DNAPL im Boden abzubauen, zum Beispiel durch einbringen starker Oxidationsmittel. In der EU bzw. Deutschland gelten allerdings strenge Bestimmungen für das Einleiten von Stoffen in das Grundwasser. Genaueres regelt die Wasser-Rahmen-Richtlinie (WRRL, EU) und das Wasserhaushaltsgesetz (WHG), sowie die Grundwasserverordnung (GWV) und die Landeswassergesetze. Grundsätzlich ist die Einleitung nur zulässig "...wenn eine nachteilige Veränderung der Wasserbeschaffenheit nicht zu besorgen ist..." (WHG, §48). Aber auch die Entnahme von Grundwasser ist genehmigungspflichtig. - -Tenside können auf zweierlei Arten den Austrag von DNAPLs fördern. Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL als zusammenhängende Phase, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser. Diese Methode gilt als sehr effizient, da die Gesamtmenge auf einmal transportiert wird und so nur ein bis zwei Porenvolumina Spüllösung benötigt werden. Die Mobilisierung birgt jedoch auch Gefahren. Aufgrund der einwirkenden Kräfte ist die frei bewegliche Schwerphase hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, wenn die gravitativen Kräfte größer als die kapillaren Kräfte werden. Ebenso besteht die Möglichkeit einer unerwünschten horizontalen Mobilisierung, bei der sich der DNAPL nicht mit der Pumpströmung mitbewegt, sondern in andere Bereiche verlagert wird. -Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht. Durch diesen Effekt kann die Löslichkeit um ein Vielfaches der ursprünglichen Löslichkeit gesteigert werden. Idealerweise bildet sich Mikroemulsion, die aufgrund ihrer Struktur und Eigenschaften wie eine einphasiges Fluid behandelt werden kann, das heißt ein definiertes Fließverhalten aufweist. Diese Methode beansprucht mehr Zeit, da der DNAPL Schritt für Schritt gelöst wird, also mehrere Porenvolumina zu seiner vollständigen Entfernung notwendig sind. Die Effektivität im Vergleich zur Mobilisierung ist somit deutlich geringer. Wie effektiv eine Sanierung mittels Tensidspülung ist, ist abhängig von der Art des DNAPL-Reservoirs, der Bodenart und -Struktur, sowie den Wechselwirkungen zwischen den flüssigen Phasen und mit der festen Phase. +Bei deren Durchführung stellen sich grundsätzliche Probleme. Häufig liegt die DNAPL-Quelle in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht auf Grund der schlechten Löslichkeit von DNAPLs allerdings häufig nicht aus, um mit vertretbarem Zeit- und Energieaufwand eine vollständige Sanierung herbeizuführen. Daher ist es nötig mit Additiven zu arbeiten, welche die Auflösung und den Abtransport des DNAPLs fördern. Das heißt, es wird eine Spüllösung mit einem lösungsvermittelnden Zusatz in den Boden injiziert, die den DNAPL löst und stromabwärts wieder abgepumpt werden kann. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Möglich ist es aber auch, den DNAPL im Boden abzubauen, zum Beispiel durch einbringen starker Oxidationsmittel. In der EU bzw. Deutschland gelten jedoch strenge Bestimmungen für das Einleiten von Stoffen in das Grundwasser. Genaueres regelt die Wasser-Rahmen-Richtlinie (WRRL, EU) und das Wasserhaushaltsgesetz (WHG), sowie die Grundwasserverordnung (GWV) und die Landeswassergesetze. Grundsätzlich ist die Einleitung nur zulässig "...wenn eine nachteilige Veränderung der Wasserbeschaffenheit nicht zu besorgen ist..." (WHG, §48). Aber auch die Entnahme von Grundwasser ist genehmigungspflichtig. + +%Tenside können auf zweierlei Arten den Austrag von DNAPLs fördern. Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL als zusammenhängende Phase, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser. Diese Methode gilt als sehr effizient, da die Gesamtmenge auf einmal transportiert wird und so nur ein bis zwei Porenvolumina Spüllösung benötigt werden. Die Mobilisierung birgt jedoch auch Gefahren. Aufgrund der einwirkenden Kräfte ist die frei bewegliche Schwerphase hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, wenn die gravitativen Kräfte größer als die kapillaren Kräfte werden. Ebenso besteht die Möglichkeit einer unerwünschten horizontalen Mobilisierung, bei der sich der DNAPL nicht mit der Pumpströmung mitbewegt, sondern in andere Bereiche verlagert wird. +%Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht. Durch diesen Effekt kann die Löslichkeit um ein Vielfaches der ursprünglichen Löslichkeit gesteigert werden. Idealerweise bildet sich Mikroemulsion, die aufgrund ihrer Struktur und Eigenschaften wie eine einphasiges Fluid behandelt werden kann, das heißt ein definiertes Fließverhalten aufweist. Diese Methode beansprucht mehr Zeit, da der DNAPL Schritt für Schritt gelöst wird, also mehrere Porenvolumina zu seiner vollständigen Entfernung notwendig sind. Die Effektivität im Vergleich zur Mobilisierung ist somit deutlich geringer. + @@ -148,11 +144,8 @@ Tensidlösungen können unterstützend bei der Sanierung in der gesättigten Grundwasserzone eingesetzt werden. Hierzu wird die Spüllösung über einen Injektionsbrunnen in den Boden eingebracht und breitet sich dort im Grundwasserstrom aus. Dabei wird der vorliegende, schlecht wasserlösliche Kontaminant solubilisiert oder mobilisiert und kann dann über einen Extraktionsbrunnen aus dem Grundwasser entfernt werden. Solubilisierung bedeutet, dass sich die Wasserlöslichkeit des DNAPLs erhöht. Dies beruht auf der Einlagerung in Mizellen: Die Tensidmoleküle lagern sich mit ihrem hydrophoben Ende um die DNAPL-Moleküle an und bringen diese, bedingt durch die nun nach außen zeigenden hydrophilen Kopfgruppen, im Wasser in Lösung. Mobilisierung beruht auf der Reduzierung der Grenz- und Oberflächenspannung. Das heißt unter anderem, dass die Affinität, sich an unpolaren Oberflächen anzulagern, entfällt und die freie Beweglichkeit in der wässrigen Phase möglich wird. Gemäß der "fractional flow theory" wird dabei stets ein Teil des DNAPLs als zusammenhängende Phase vor einer Tensidfront hergeschoben \citep{Falta.1998}. Ein Effekt der meist auch bei der Solubilisierung beobachtet wird, hier aber unerwünscht ist. Mobilisierung ist das weit effektivere Verfahren. Jedoch ist hier ein System mit extrem niedriger Grenzflächenspannung nötig, welches sehr aufwändig zu erstellen ist und es besteht die Gefahr einer unerwünschten vertikalen Mobilisierung, also ein Abgleiten in tiefere Bodenschichten. Die mobilisierte Phase ist daher schlecht hydraulisch kontrollierbar. Zwischen der Mobilisierung und Solubilisierung besteht ein fließender Übergang. Dadurch können auch hohe Austragsraten durch reine Solubilisierung erzielt werden, allerdings steigt damit auch wieder das Risiko einer unerwünschten Mobilisierung. +Wie effektiv eine Sanierung mittels Tensidspülung ist, ist abhängig von der Art des DNAPL-Reservoirs, der Bodenart und -Struktur, sowie den Wechselwirkungen zwischen den flüssigen Phasen und mit der festen Phase. %Im untersuchten Fall wurde versucht ein Mikroemulsionssystem für die Solubilisierung zu entwickeln um die Vorteile (hohe Effizienz, Stabilität) ohne die genannten Nachteile nutzen zu können. %Der Einsatz von Tensiden zu Sanierungszwecken ist ein noch wenig untersuchtes Gebiet innerhalb der Sanierungsverfahren. Der Einsatz anderer Chemikalien ist hier schon weiter fortgeschritten. Ein Grund hierfür ist der weit größere Aufwand bei der Ermittlung eines effektiven Emulsionssytems. Ein Grund ist die hohe Speziefität eines solchen Systemes. Für die Wahl eines passenden Emulgators sind nicht nur die chemischen Wechselwirkungen zwischen den zu Mischenden Stoffen von Bedeutung, wie sie Eingangs in Kapitel \ref{Einfuehrung Batch} beschrieben sind. Auch physikalische Größen beeinflussen das System. - -\subsection {Batchtests} - -Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehender Kontrolle äußerer Einflüsse miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch gezielt einzeln variieren, wobei andere Einflussgrößen konstant gehalten werden. In vorangegangenen Versuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tensidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen der vorliegenden Arbeit wurden die Ergebnisse der vorhergehenden Versuche überprüft und erweitert. Es wurden Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizelle Concentration), sowie über eine große Konzentrationsspanne mit Tensidgehalten von bis zu $10$ \% durchgeführt. Anschließend wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig effektiver sind als ein Einzeltensid. @@ -183,7 +176,7 @@ \end{equation} -Die Trapping Number $N_{T}$beschreibt das Kräftegleichgewicht zwischen Kapillarkräften, die den DNAPL in den Porenräumen festhalten und den viskosen und den gravitativen Kräften, die den Weitertransport fördern. +Die Trapping Number $N_{T}$ beschreibt das Kräftegleichgewicht zwischen Kapillarkräften, die den DNAPL in den Porenräumen festhalten und den viskosen und den gravitativen Kräften, die den Weitertransport fördern. Sie ist in Gleichung \ref{eqn:trapping number} definiert nach \citet{Childs.2004}. -Mithilfe der Trapping Number lässt sich eine Aussage darüber treffen, unter welchen Vorrausetzungen es zur Mobilisierung des DNAPLs kommt. Childs definiert hierzu sogenannte Trapping Curves, wo die Residualsättigung gegen die Grenzflächenspannung für eine variable Viskosität aufgetragen wird. Es können aber auch andere unabhängige Parameter definiert werden, wie Grenzflächenspannung oder Fließrate. +Mithilfe der Trapping Number lässt sich eine Aussage darüber treffen, unter welchen Vorrausetzungen es zur Mobilisierung des DNAPLs kommt. Childs definiert hierzu sogenannte Trapping Curves, wo die Residualsättigung gegen die Grenzflächenspannung für eine variable Viskosität aufgetragen wird. Es können aber auch andere unabhängige Einflussgrößen variiert werden, wie Grenzflächenspannung oder Fließrate. \begin{equation} @@ -208,5 +201,5 @@ \vspace{\baselineskip} %Die Residualsättigung kann durch anpassen der Van-Genuchten-Gleichung und Einsetzen der Trapping Number bestimmt werden. -Ist die Grenzflächenspannung nicht bekannt, kann sie näherungsweise aus den Oberflächenspannungen der beiden Phasen nach der Antonow'schen Regel bestimmt werden, siehe Gleichung \ref{eqn:Antonow} \citep{Merkwitz.1997}. +Ist die Grenzflächenspannung nicht bekannt, kann sie näherungsweise aus den Oberflächenspannungen der beiden Phasen nach der Antonow'schen Regel bestimmt werden, \citep{Merkwitz.1997}, siehe Gleichung \ref{eqn:Antonow} . \begin{equation} @@ -215,5 +208,5 @@ \end{equation} -Die Antonow'sche Gleichung berücksichtigt jedoch nur die Kräfte zwischen Flüssigphase der einzelnen Phasen und deren Dampfphase. Die Oberflächen werden als konstant und unabhängig von der jeweiligen Phase angenommen und die Wechselwirkungen zwischen den flüssigen Phasen werden nicht beachtet. Dort treten Dispersion, Polarität und Wasserstoffbrückenbindungen auf. Sollen die Grenzflächenspannungen zwischen Flüssigkeiten und Festkörpern berechnet werden ist zudem die Kenntnis des Kontaktwinkels nötig. \citep{Kruss.2012}. %http://www.kruss.de/de/theorie/messungen/kontaktwinkel/einfuehrung.html +Die Antonow'sche Gleichung berücksichtigt jedoch nur die Kräfte zwischen Flüssigphase der einzelnen Phasen und deren Dampfphase. Die Oberflächen werden als konstant und unabhängig von der jeweiligen Phase angenommen und die Wechselwirkungen zwischen den flüssigen Phasen werden nicht beachtet. Dort treten Dispersion, Polarität und Wasserstoffbrückenbindungen auf. Sollen die Grenzflächenspannungen zwischen Flüssigkeiten und Festkörpern berechnet werden ist zudem die Kenntnis des Kontaktwinkels nötig \citep{Kruss.2012}. %http://www.kruss.de/de/theorie/messungen/kontaktwinkel/einfuehrung.html Da die Anteile der Wechselwirkungskräfte nicht bekannt sind, soll hier dennoch mit der Näherung von Antonow gerechnet werden. Zu bedenken ist, dass die berechnete Grenzflächenspannung größer sein dürfte, als die tatsächliche Grenzflächenspannung. Index: /diplomarbeit/Diskussion.tex =================================================================== --- /diplomarbeit/Diskussion.tex (revision 228) +++ /diplomarbeit/Diskussion.tex (revision 229) @@ -87,6 +87,6 @@ Die Packung der Säulen hat einen großen Einfluss auf das Entstehen von Mobilisierung. Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrige Phase bewegen kann. Je nachdem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase mit der Strömung, oder aber er sinkt nach unten ab. Mobilisierung trat bei einigen Säulen im Mittelsand auf. Aufgrund der größeren Poren sind die Kapillarkräfte im Mittelsand geringer als im Feinsand. -Die Beobachtung der Säulen zeigte zudem, dass das Tensid in die DNAPL-Phase eindringt, wie auch in den Batchversuchen beobachtet. Dies führt mitunter dazu, dass das Tensid sich scheinbar schneller bewegt, als durch die Strömung bedingt. Da dies leichter bei größeren Poren und der daher größeren Oberfläche der DNAPL-Blobs geht, werden die mit Mittelsand gepackten Säulen scheinbar schneller als die Feinsandsäulen mit Tensidlösung geflutet. Tatsächlich ist die Abstandsgeschwindigkeit bei gleicher Porosität und Fließrate weitgehend identisch aber die selbe. Andererseits wurde der Feinsand schneller saniert. Die weiße Emulsion schob sich blockartig durch die Säulen. Im Mittelsand dauerte dies länger. Die größeren DNAPL-Blobs konnten nicht auf einmal solubilisiert werden, so dass die Kontaktzeit zwischen Tensid und NAPL und damit der Austrag der Emulsion verlängert wurde. Aber auch die auftretende Mobilisierung im Mittelsand spielt eine Rolle für die Austragsdauer. -Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tensidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand, abhängig von der Tensidkonzentration und der Fließrate. Die größten Konzentrationen wurden dabei im Feinsand bei 2\% Tensid und 1 ml/min und im Mittelsand bei 1\% und 0,5 ml/min gefunden. Die Ergebnisse der einzelnen Versuche und Mittelwerte über Versuche gleicher Fließrate und Tensidkonzentration sind in Tabelle \ref{tab:Einfluss} dargestellt. +Die Beobachtung der Säulen zeigte zudem, dass das Tensid in die DNAPL-Phase eindringt, wie auch in den Batchversuchen beobachtet. Dies führt mitunter dazu, dass das Tensid sich scheinbar schneller bewegt, als durch die Strömung bedingt. Da dies leichter bei größeren Poren und der daher größeren Oberfläche der DNAPL-Blobs geht, werden die mit Mittelsand gepackten Säulen scheinbar schneller als die Feinsandsäulen mit Tensidlösung geflutet. Tatsächlich ist die Abstandsgeschwindigkeit bei gleicher Porosität und Fließrate weitgehend identisch aber die selbe. Andererseits wurde der Feinsand schneller saniert. Die weiße Emulsion schob sich blockartig durch die Säulen. Im Mittelsand dauerte dies länger. Die größeren DNAPL-Blobs konnten nicht auf einmal solubilisiert werden, so dass die Kontaktzeit zwischen Tensid und DNAPL und damit der Austrag der Emulsion verlängert wurde. Aber auch die auftretende Mobilisierung im Mittelsand spielt eine Rolle für die Austragsdauer. +Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tensidlösung entfernt. Die maximalen Konzentrationen lagen bei \mbox{240-270 g/L} im Feinsand und bei \mbox{160-210 g/L} im Mittelsand, abhängig von der Tensidkonzentration und der Fließrate. Die größten Konzentrationen wurden dabei im Feinsand bei 2\% Tensid und 1 ml/min und im Mittelsand bei 1\% und 0,5 ml/min gefunden. Die Ergebnisse der einzelnen Versuche und Mittelwerte über Versuche gleicher Fließrate und Tensidkonzentration sind in Tabelle \ref{tab:Einfluss} dargestellt. Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als 50 g/L erreicht. Konzentrationen von 200 g CS$_2$ wurden erst mit 2,5\% Tensid gefunden. Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei Bachversuchen beobachteter Effekt aufgetreten sein: Dort hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. Index: /diplomarbeit/Material.tex =================================================================== --- /diplomarbeit/Material.tex (revision 228) +++ /diplomarbeit/Material.tex (revision 229) @@ -5,5 +5,5 @@ \subsection*{Tenside} -Die hier untersuchten Tensidsysteme basierten auf einer Emulsion die mittels dem nichtionischen Tensid Brij 97 (Synonym: Brij O10, Sigma Aldrich) stabilisiert wurde. Dabei handelt es sich um einen Polyoxyethylenether des Oleylalkohols, einem einfach ungesättigter C18-Alkohol, verknüpft mit zehn Ethylenoxidgruppen. Die Strukturformel ist in Abbildung \ref{pic:Brij} dargestellt. Das Tensid hat einen HLW-Wert von 12 und ist relativ gut wasserlöslich. Unter Rühren und leichter Temperaturerhöhung ließ sich problemlos eine zehnprozentige Tensidlösung herstellen. +Die hier untersuchten Tensidsysteme basierten auf einer Emulsion die mittels dem nichtionischen Tensid Brij 97 (Synonym: Brij O10, Sigma Aldrich) stabilisiert wurde. Dabei handelt es sich um einen Polyoxyethylenether des Oleylalkohols, einem einfach ungesättigter C18-Alkohol, verknüpft mit zehn Ethylenoxidgruppen. Die Strukturformel ist in Abbildung \ref{pic:Brij} dargestellt. Das Tensid hat einen HLB-Wert von 12 und ist relativ gut wasserlöslich. Unter Rühren und leichter Temperaturerhöhung lässt sich problemlos eine zehnprozentige Tensidlösung herstellen. \begin{figure} @@ -22,8 +22,8 @@ \subsection*{Wasser} -Für die Versuche wurde ausschließlich bidestilliertes Wasser mit einem Leitwert von 0,055$µ$S/cm verwendet. Obwohl frühere Versuche keine Empfindlichkeit gegen Ionen gezeigt hatten, sollte so der Einfluss von Fremdbestandteilen klein gehalten werden. +Für die Versuche wurde ausschließlich bidestilliertes Wasser mit einem Leitwert von 0,055 $µ$S/cm verwendet. Obwohl frühere Versuche keine Empfindlichkeit gegen Ionen gezeigt hatten, sollte so der Einfluss von Fremdbestandteilen klein gehalten werden. \subsection*{Schwefelkohlenstoff} -Der untersuchte DNAPL, Schwefelkohlenstoff (CS$_2$), zeichnet sich vor allem durch seine geringe Löslichkeit in Wasser (2 g/L), der hohe Dichte (1,26 g/mL) und dem hohen Dampfdruck (48,2 kPa) aus. Die geringe Löslichkeit und die hohe Dichte sorgen dafür, dass die Mischbarkeit mit Wasser sehr begrenzt ist und dass das CS$_2$ in Wasser als Schwerphase nach unten absinkt und sich am Gefäßboden zusammen lagert. Der hohe Dampfdruck bringt in Kombination mit der Explosivität der Substanz einige Besonderheiten im Umgang mit sich. Generell ist der Kontakt mit der Atmosphäre möglichst zu vermeiden. Daher wurden Vorräte in geöffneten Flaschen stets mit Wasser überschichtet, gasdichte Spritzen für den Transfer verwendet, die Proben stets dicht verschlossen und bis zur Analyse kühl gelagert. Um bei Unfällen die Explosionsgefahr gering zu halten wurde in einem speziell eingerichteten Labor gearbeitet. Dieses war ausgestattet mit einer Zwangsbe- bzw. entlüftung. Wobei aufgrund der hohen Dichte der Substanz eine gesonderte Absaugung für den Raum auf Fußbodenhöhe eingerichtet war. Der Boden war mit einer antistatischen Beschichtung versehen und sämtliche elektrische Geräte waren luftdicht gekapselt und geerdet. Aufgrund der Giftigkeit der Dämpfe wurde die Abluft aus den Digestorien und die Raumluft kontinuierlich mittels stationärem PID (Photoionisationsdetektor) und in zusätzlichen Stichproben mit einem mobilen PID überwacht. Durch stets als Verunreinigung im CS$_2$ enthaltene COS weist das in Reinform geruchsneutrale CS$_2$ darüber hinaus einen ausgeprägten Eigengeruch auf, der auch in sehr kleinen Mengen bereits von der menschlichen Nase wahrgenommen wird. Bei längerer Exposition kann es allerdings zu Gewöhnungseffekten kommen. +Der untersuchte DNAPL, Schwefelkohlenstoff (CS$_2$), zeichnet sich vor allem durch seine geringe Löslichkeit in Wasser (2 g/L), die hohe Dichte (1,26 g/mL) und den hohen Dampfdruck \mbox{(48,2 kPa)} aus. Die geringe Löslichkeit und die hohe Dichte sorgen dafür, dass die Mischbarkeit mit Wasser sehr begrenzt ist und dass das CS$_2$ in Wasser als Schwerphase nach unten absinkt und sich am Gefäßboden zusammen lagert. Der hohe Dampfdruck bringt in Kombination mit der Explosivität der Substanz einige Besonderheiten im Umgang mit sich. Generell ist der Kontakt mit der Atmosphäre möglichst zu vermeiden. Daher wurden Vorräte in geöffneten Flaschen stets mit Wasser überschichtet, gasdichte Spritzen für den Transfer verwendet und die Proben stets dicht verschlossen und bis zur Analyse kühl gelagert. Um bei Unfällen die Explosionsgefahr gering zu halten wurde in einem speziell eingerichteten Labor gearbeitet. Dieses war ausgestattet mit einer Zwangsbe- bzw. entlüftung. Wobei aufgrund der hohen Dichte der Substanz eine gesonderte Absaugung für den Raum auf Fußbodenhöhe eingerichtet war. Der Boden war mit einer antistatischen Beschichtung versehen und sämtliche elektrische Geräte waren luftdicht gekapselt und geerdet. Aufgrund der Giftigkeit der Dämpfe wurde die Abluft aus den Digestorien und die Raumluft kontinuierlich mittels stationärem PID (Photoionisationsdetektor) und in zusätzlichen Stichproben mit einem mobilen PID überwacht. Durch stets als Verunreinigung im CS$_2$ enthaltenes COS weist das in Reinform geruchsneutrale CS$_2$ darüber hinaus einen ausgeprägten Eigengeruch auf, der auch in sehr kleinen Mengen bereits von der menschlichen Nase wahrgenommen wird. Bei längerer Exposition kann es allerdings zu Gewöhnungseffekten kommen. Um die Schwerphase zu markieren und visuelle Beobachtungen zu ermöglichen wurde das CS$_2$ mit dem Tracerfarbstoff Oil Red angefärbt. 50 g/L waren hier ausreichend. Höhere Konzentrationen können das gesamte Tensidsystem beeinflussen und zu veränderten Grenzflächenspannungen oder sogar zu Polymerisation führen. @@ -47,5 +47,5 @@ \begin{figure} -\subfigure +%\subfigure \centering {\chemfig{Na^{+}\hspace{0,5cm}O^{-} -S(=[:90]O)(=[:270]O)-(-[:60](=[:90]O)-O-[:30]-[:330](-[:90]-[:30])-[:30]-[:330]-[:30]-[:330]) @@ -56,5 +56,5 @@ \begin{figure} -\subfigure +%\subfigure \centering {\chemfig{ RO \Bigg[ -[:30]-[:330]O \Bigg]_{6} H}} @@ -66,5 +66,5 @@ \begin{figure} -\subfigure +%\subfigure \centering {\chemfig{ C_{9}H_{19} -*6(-=-(\Bigg[ -[:30]O-[:330]-[:30]-[:330] \Bigg]_{10} OH)=-=) }} @@ -82,4 +82,9 @@ \section{Durchführung der Batchversuche} + +Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehender Kontrolle äußerer Einflüsse miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch gezielt einzeln variieren, wobei andere Einflussgrößen konstant gehalten werden. In vorangegangenen Versuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tensidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen der vorliegenden Arbeit wurden die Ergebnisse der vorhergehenden Versuche überprüft und erweitert. Es wurden Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizelle Concentration), sowie über eine große Konzentrationsspanne mit Tensidgehalten von bis zu $10$ \% durchgeführt. Anschließend wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig effektiver sind als ein Einzeltensid. + + + \subsection{Eruierung der Ergebnisse aus vorangegangenen Versuchen} @@ -94,10 +99,10 @@ Aus Tensid und Wasser wurde zunächst eine Stammlösung hergestellt. Das Tensid wurde in eine Glasflasche eingewogen und mit Wasser aufgefüllt. Alle Massen wurden durch Wägung erfasst, so dass der tatsächliche Masseanteil an Tensid in der Lösung bestimmt werden konnte. Zudem wurde die Dichte der Tensidlösung bestimmt. Der DNAPL wurde in den Vials vorgelegt und über die Ventile die Tensidstammlösung und Wasser mittels Spritze über die Ventile zugegeben. Dazu war eine Umrechnung zwischen gewünschten Massenanteilen und den entsprechenden Volumenzugaben der einzelnen Komponenten erforderlich, weshalb die Dichte der Tensidlösung, des Wassers und des DNAPLs benötigt wurden. -Die Mischungen wurden eine Woche lang in ein auf 20°C Temperiertes Wasserbad gestellt. Nach 24 und nach 48 Stunden wurden die Vials nochmals geschüttelt. Danach wurden sie bis zur Probenahme ruhen gelassen. +Die Mischungen wurden eine Woche lang in ein auf 20°C temperiertes Wasserbad gestellt. Nach 24 und nach 48 Stunden wurden die Vials nochmals geschüttelt. Danach wurden sie bis zur Probenahme ruhen gelassen. Für die Analytik wurde aus der leichten Phase Probe entnommen und in zwei Schritten auf das Verhältnis 1/100 in Methanol verdünnt. Die Verdünnung in zwei Schritten war nötig, um eine repräsentative Probenahme zu gewährleisten. Die Bestimmung der Konzentration an gelöstem CS$_2$ erfolgte mittels HPLC mit UV/VIS-Detektor bei einer Wellenlänge von 315 nm. %Hier muss das Solubilisierungspotential mit rein Aus der gemessenen Konzentration und der Tensidkonzentration wurde das Solubilisierungspotentials berechnet, - indem die Masse an gelöstem CS$_2$ auf die Masse an Tensid bezogen wurde: $S=m_{CDS}/m_{Surfactant}$. + indem die Masse an gelöstem CS$_2$ auf die Masse an Tensid bezogen wurde: \mbox{$S=m_{CDS}/m_{Surfactant}$}. Die Dichte der Proben wurde bestimmt durch wiegen eines definierten Probevolumens. Hierzu wurde mit einer gasdichten @@ -107,5 +112,5 @@ Die Oberflächenspannung der Proben wurde mit einem Blasendrucktensiometer (\mbox{BPA-1P}, Sinterface) gemessen. -Die Messung erfolgte im "fast scan mode" des Gerätes. Dadurch dauert die Messung einer Probe nur fünf bis zehn Minuten. +Die Messung erfolgte im "fast scan mode" des Gerätes. Dadurch dauert die Messung einer Probe nur fünf bis zehn Minuten. Mit einem Mikro-Ubbelohde-Viskosimeter wurde die kinematische Viskosität bestimmt. Dabei wurden für die Batchreihe, bei der aufgrund der hohen Tensidkonzentrationen mit einer hohen Viskosität zu rechnen war, ein Viskosimeter mit einer Kapillare von 20 $µ$m Durchmesser verwendet. Für die Reihe mit niedrigen Tensidkonzentrationen wurde ein Viskosimeter @@ -186,5 +191,5 @@ Die verwendeten Glassäulen hatten einen Innendurchmesser von 40 mm und waren 0,5 m lang. Die Verwendung von Glas als Säulenmaterial ermöglicht die optische Überwachung der Strömung. Effekte wie z.B. Fingering und Mobilisierung können gut beobachtet und der Sanierungsverlauf photografisch dokumentiert werden. -Das weitere Säulenzubehör ist in Abbildung \ref{pic:S"aule} +Das weitere Säulenzubehör ist in \mbox{Abbildung \ref{pic:S"aule}} vollständig zu sehen und in Tabelle \ref{tab:S"aulenzubehör} aufgeführt. @@ -339,5 +344,5 @@ verbaut. Über die Ventile vor den Pumpen konnte zum einen Blasenfreiheit nach Ansaugen des Fluids vor den Pumpen hergestellt werden. Zum anderen erwiesen sie sich auch als hilfreich bei der Wartung der Pumpen. Die vor den Säulen verbauten Ventile hatten die Aufgabe, den Fluss zwischen Zulauf zu den Säulen und freiem Ausfluss (zum Spülen der Zuleitungen) zu lenken, bzw. dienten dem Umschalten zwischen Aufwärts- und Abwärtsströmung in der Säule. Die Anordnung ist in Abbildung \ref{pic:dreiwege} zu sehen. -In den Bereichen des Versuchsaufbaus, die mit dem reinen CS$_2$ in Berührung kamen, waren Umschaltventile (Edelstahl, Swagelog) verbaut. Die vordere Ventilreihe schaltete zwischen Verteiler oder direktem Zufluss über die jeweiligen Zuleitungen. Die hintere Ventilreihe und die oberhalb der Säulen angeordneten Ventile schalteten zwischen Auf- und Abwärtsdurchströmung der Säulen. Vgl. Abbildung \ref{pic:umschalt} +In den Bereichen des Versuchsaufbaus, die mit dem reinen CS$_2$ in Berührung kamen, waren Umschaltventile (Edelstahl, Swagelog) verbaut. Die vordere Ventilreihe schaltete zwischen Verteiler oder direktem Zufluss über die jeweiligen Zuleitungen. Die hintere Ventilreihe und die oberhalb der Säulen angeordneten Ventile schalteten zwischen Auf- und Abwärtsdurchströmung der Säulen, vgl. Abbildung \ref{pic:umschalt}. Hinter den Säulen wurden Nadelventile %Material, Hersteller Index: /diplomarbeit/titlepage.tex =================================================================== --- /diplomarbeit/titlepage.tex (revision 211) +++ /diplomarbeit/titlepage.tex (revision 229) @@ -44,9 +44,9 @@ {\bf\huge -Säulenversuche zur Auswahl \\ geeigneter In-Situ-Verfahren \\zur Entfernung \\eines potentiellen Schadstoffes \\aus der gesättigten Zone +Säulenversuche zur Auswahl \\ geeigneter In-Situ-Verfahren \\zur Entfernung eines \\ potentiellen Schadstoffes \\aus der gesättigten Zone } \end{minipage} -\vspace{0,7cm} +\vspace{1,0cm} \begin{minipage} @@ -58,7 +58,7 @@ {\large an der Versuchseinrichtung zur\\ -Grundwasser- und Altlastensanierung VEGAS\bigskip +Grundwasser- und Altlastensanierung VEGAS%\bigskip \\ -des Instituts für Wasserbau\bigskip\ +des Instituts für Wasserbau%\bigskip \\ der Universität Stuttgart @@ -68,5 +68,5 @@ \end{minipage} -\vspace{0,7cm} +\vspace{1,0cm} \begin{minipage} @@ -83,5 +83,5 @@ \end{minipage} -\vspace{0,7cm} +\vspace{1,0cm} \begin{minipage}{15cm} @@ -100,5 +100,5 @@ {\large -vorgelegt am xx. Juni 2012 +vorgelegt am 26. Oktober 2012 } @@ -168,5 +168,5 @@ \vspace{1cm} -Stuttgart, den xx. Juni 2012 \\ +Stuttgart, den 26. Oktober 2012 \\ \hspace{9cm} \rule[1ex]{7cm}{1pt} Index: /diplomarbeit/Danksagung.tex =================================================================== --- /diplomarbeit/Danksagung.tex (revision 218) +++ /diplomarbeit/Danksagung.tex (revision 229) @@ -6,4 +6,4 @@ Des Weiteren bedanke ich mich beim Labor-Team des VEGAS, allen voran dem Laborleiter Dr.-Ing. Norbert Klaas für die Unterstützung bei analytischen und chemischen Fragestellungen, sowie den technischen Angestellten Tanja Fimpel und Elena Schön, für die Messungen, die sie für mich durchführten und die vielen hilfreichen Tips im Laboralltag. \\ Vielen Dank auch an Dipl.Ing. Oliver Trötschler für die Überlassung von Unterlagen, die Beantwortung von Fragen und seine hilfreiche Hinweise.\\ -Ein großes Dankeschön an die HIWIs Uchechukwu Ihunweze und Dimitri Bastron, die mir bei der Vorbereitung der Versuche und der Probenahme eine große Hilfe waren. Danke vor allem für die Übernahme der Nachtschichten, Uche.\\ +Ein großes Dankeschön an die HIWIs Uchechukwu Ihunweze und Dimitri Bastron, die mir bei der Vorbereitung der Versuche und der Probenahme eine große Hilfe waren. \\ Weitere Dank gebührt dem Werkstattleiter Henning Eickhoff, sowie Kurt Völkel und den weiteren Mitarbeitern und Auszubildenden der Werkstätten am Vegas, die bei Änderungen im Labor und am Versuchsaufbau schnell und unkompliziert Hilfe leisteten. Index: /diplomarbeit/DA_lit.bib =================================================================== --- /diplomarbeit/DA_lit.bib (revision 228) +++ /diplomarbeit/DA_lit.bib (revision 229) @@ -159,11 +159,9 @@ author = {Shinoda, Kozo}, year = {1969}, - title = {{The Stability of O/W Type Emulsions as Functions of Temperature and the HLB of Emulsifiers: The Emulsification by PIT- method}}, - urldate = {14.06.2012}, - pages = {258--263}, - volume = {Vol. 30}, - %number = {June}, + title = {{The Stability of O/W Type Emulsions as Functions of Temperature and the HLB of Emulsifiers: The Emulsification by PIT-method}}, + pages = {{258--263}}, + volume = {{Vol. 30}}, issn = {00219797}, - journal = {Journal of Colloid and Interface Science} + journal = {{Journal of Colloid and Interface Science}} } @@ -458,5 +456,5 @@ author = {Kr{\"u}ss}, editor = {{Fa. Kr{\"u}ss}}, - year = {22.05.2012}, + year = {25.10.2012}, title = {Kontaktwinkel}, note = {http://www.kruss.de/de/theorie/messungen/kontaktwinkel/einfuehrung.html}, @@ -528,13 +526,15 @@ author = {D{\"o}rfler, Hans-Dieter}, year = {2002}, - title = {{Grenzfl{\"a}chen und kolloid-disperse Systeme: Physik und Chemie } , + title = {{Grenzfl{\"a}chen und kolloid-disperse Systeme: Physik und Chemie }} , price = {EUR 89.95}, address = {Berlin}, - publisher = {Springer}, - isbn = {3-540-42547-0} -} + publisher = {{Springer}}, + isbn = {{3-540-42547-0}} +} + + @article{Falta.1998, - author = {{Falta, Ronald W. }}, + author = {Falta, Ronald W. }, year = {1998}, title = {{Using Phase Diagrams to Predict the Performance of Cosolvent Floods for NAPL Remediation}}, Index: /diplomarbeit/Ausarbeitung.tex =================================================================== --- /diplomarbeit/Ausarbeitung.tex (revision 221) +++ /diplomarbeit/Ausarbeitung.tex (revision 229) @@ -80,4 +80,5 @@ \include{Material} %\include{Batch} + \include{Kapitel_2} Index: /diplomarbeit/Einleitung.tex =================================================================== --- /diplomarbeit/Einleitung.tex (revision 228) +++ /diplomarbeit/Einleitung.tex (revision 229) @@ -3,5 +3,5 @@ Im Zuge der tertiären Erdölförderung (engl. EOR) kommen zunehmend Chemikalien zum Einsatz um die Förderung von Restöl aus konventionell ausgebeuteten Lagerstätten zu ermöglichen. Die Auswahl der Chemikalien richtet sich dabei primär nach der Zusammensetzung und Beschaffenheit des Rohöls und des Gesteins der Lagerstätte. -Eine im Zuge der EOR in den letzten Jahren untersuchte Chemikalie ist Schwefelkohlenstoff (CS$_2$). Dieses wird in das Bohrloch gepumpt wo es sich mit dem Öl mischt und zur Verdrängung führt (miscible displacement). Ziel ist eine Vermischung des Rohöls mit dem Solvent, um eine Herabsetzung der Viskosität des Öls und eine Verringerung der Kapillarität zu erreichen. Dieses Verfahren wurde bislang vor allem mit Stickstoff, Kohlendioxid oder Erdgas durchgeführt. Diese Gase eignen sich aber nur zum Einsatz der Förderung von leichten Ölen unter eingeschränkten Bedingungen. CS$_2$ dagegen zeichnet sich durch eine hervorragende Mischbarkeit mit Mineralölen, sowie Schweröl und sogar Bitumen in einem großen Temperatur- und Druckbereich aus \citep{Berg.2010}. +Eine im Zuge der EOR in den letzten Jahren untersuchte Chemikalie ist Schwefelkohlenstoff (CS$_2$), die zu den DNAPLs (dense non aqueous phase liquids) zählt. Dieses wird in das Bohrloch gepumpt wo es sich mit dem Öl mischt und zur Verdrängung führt (miscible displacement). Ziel ist eine Vermischung des Rohöls mit dem Solvent, um eine Herabsetzung der Viskosität des Öls und eine Verringerung der Kapillarität zu erreichen. Dieses Verfahren wurde bislang vor allem mit Stickstoff, Kohlendioxid oder Erdgas durchgeführt. Diese Gase eignen sich aber nur zum Einsatz der Förderung von leichten Ölen unter eingeschränkten Bedingungen. CS$_2$ dagegen zeichnet sich durch eine hervorragende Mischbarkeit mit Mineralölen, sowie Schweröl und sogar Bitumen in einem großen Temperatur- und Druckbereich aus \citep{Berg.2010}. Vor dem groß dimensionierten Einsatz solcher Chemikalien, ist es unabdingbar, ihr Verhalten in der Umwelt zu untersuchen, um mögliche Umweltgefahren zu erkennen und bei Schadensfällen schnell und effizient handeln zu können. Sanierungsmethoden für DNAPL-Schäden im Boden- und Grundwasserbereich sind zum Beispiel Spülungen mit Additiven, wie Alkoholen oder Tensiden. Index: /diplomarbeit/Abstract.tex =================================================================== --- /diplomarbeit/Abstract.tex (revision 228) +++ /diplomarbeit/Abstract.tex (revision 229) @@ -5,7 +5,7 @@ Die betrachtete Chemikalie Schwefelkohlenstoff (CS$_2$) ist hier ein sehr vielversprechendes Additiv. CS$_2$ gehört zur Klasse der DNAPLs (dense non aqueous phase liquids). Zur Sanierung von DNAPL-Schäden im Grundwasser sind Pump-and-Treat-Verfahren weit verbreitet. Häufig empfiehlt sich die Kombination mit der Injektion lösungsvermittelnder Additive. -Ziel dieser Arbeit war, die Möglichkeiten der Sanierung von CS$_2$ mittels einer wässrigen Tensidlösung aufzuzeigen. In Batchversuchen wurde die für die Mizellbildung kritische Tensidkonzentration bestimmt und anhand des Solubililisierungspotentials und der gemessenen Viskosität die optimale Tensidkonzentration ermittelt. In weiteren Versuchen wurden die Möglichkeiten untersucht,das System mit Linkern und Cotensiden zu optimieren und idealerweiße ein Mikroemulsionssystem zu erzeugen. Eine erkennbare Verbesserung der Emulsion wurde dabei jedoch nicht erzielt. +Ziel dieser Arbeit war, die Möglichkeiten der Sanierung eines CS$_2$-Schadens mittels einer wässrigen Tensidlösung aufzuzeigen. In Batchversuchen wurde die für die Mizellbildung kritische Tensidkonzentration bestimmt und anhand des Solubililisierungspotentials und der gemessenen Viskosität die optimale Tensidkonzentration ermittelt. In weiteren Versuchen wurden die Möglichkeiten untersucht, das System mit Linkern und Cotensiden zu optimieren und idealerweise ein Mikroemulsionssystem zu erzeugen. Eine erkennbare Verbesserung der Emulsion wurde dabei jedoch nicht erzielt. -In Säulenversuchen wurde das Fließverhalten und die Effizienz der Tensidlösung bei der Sanierung des in residualer Sättigung vorliegenden DNAPLs untersucht. Es war festzustellen, dass das Solubilisierungsvermögen im Vergleich zu den Batchversuchen deutlich höher war. Hier spielen oberflächenkatalytische Effekte und die Stabilisierung durch Feststoffpartikel eine Rolle. Unerwünschte vertikale Mobilisierung war, abhängig vom verwendeten Sand, bei einem Teil der Säulen zu beobachten. Die mobilisierte Phase im Mittelsand konnte jedoch stets wieder resolubilisiert werden. +In Säulenversuchen wurde das Fließverhalten und die Effizienz der Tensidlösung bei der Sanierung des in residualer Sättigung vorliegenden DNAPLs untersucht. Es war festzustellen, dass das Solubilisierungsvermögen im Vergleich zu den Batchversuchen deutlich höher war. Hier spielen oberflächenkatalytische Effekte und die Stabilisierung durch Feststoffpartikel eine Rolle sowie die spezifisch große Oberfläche des dispers verteilten DNAPLs. Unerwünschte vertikale Mobilisierung war, abhängig vom verwendeten Sand, bei einem Teil der Säulen zu beobachten. Die mobilisierte Phase im Mittelsand konnte jedoch stets wieder resolubilisiert werden. @@ -28,4 +28,4 @@ The flow characteristics and efficiency of the surfactant to decontaminate the DNAPL in residual saturation, were examined in column experiments. It is notable that that the solubilising potential was higher in the column experiments than in the batch tests. -Surface catalytic effects and the stabilisation by solid particles played a role here. In some of the columns, undesired vertical mobilisation was +Surface catalytic effects, the stabilisation by solid particles and the large specific surface of the widely disperse DNAPL played a role here. In some of the columns, undesired vertical mobilisation was found, depending on the sand that was used. The phase that was mobilised in the medium sand, however, could always be resolubilised. Index: /diplomarbeit/Kapitel_2.tex =================================================================== --- /diplomarbeit/Kapitel_2.tex (revision 228) +++ /diplomarbeit/Kapitel_2.tex (revision 229) @@ -18,5 +18,4 @@ \subsection{Messergebnisse} -Die Messergebnisse sind in Abbildung \ref{pic:kleine} grafisch dargestellt. \begin{figure} @@ -26,4 +25,5 @@ \end{figure} +Die Messergebnisse sind in Abbildung \ref{pic:kleine} grafisch dargestellt. Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen \mbox{15 g/l} und \mbox{50 g/l}. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm. %Dieses wird berechnet, indem die Masse an gelöster Schwerphase auf die Masse an Tensid bezogen wird: $S=m_{CDS}/m_{Surfactant}$. @@ -49,6 +49,4 @@ \subsection{Messergebnisse} - In Abbildung \ref{pic:grose} sind die Messergebnisse graphisch dargestellt. - \begin{figure} \includegraphics{batch_gros} @@ -57,4 +55,5 @@ \end{figure} + In Abbildung \ref{pic:grose} sind die Messergebnisse graphisch dargestellt. Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund 5\%. Das maximale Solubilisierungspotential wurde ebenfalls bei 5\% Tensid erreicht. Allerdings stieg die Viskosität ab 3\% Tensid an und überschritt bei 5\% Tensid bereits 5 m$^{2}$/s. Oberhalb von 5\% Tensid stieg die Viskosität stark, auf Werte über \mbox{40 m$^{2}$/s}, an. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kapillardurchmesser 20 $µ$m ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare zurückdrücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet, dürften aber dennoch sehr hoch liegen. @@ -68,5 +67,5 @@ %wie sich eine Erhöhung der Tensidkonzentration auf das Gesamtsystem auswirkt. Es sollte eine Aussage über die Tensidkonzentration mit der besten Solubilisierungsrate (Masse geöster DNAPL / Masse eingesetztes Tensid) gemacht werden, sowie der Anstieg der Viskosität kritisch betrachtet werden. -Das optimale Solubilisierungspotential liegt den Messwerten nach bei 2-5\% Tensid. Allerdings ist hier auch die Dichte und die Viskosität bereits stark erhöht. Durch die erhöhte Dichte kann die vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da der Druck im porösen Medium bei gleicher Fließrate ansteigt. Die Vorhersage des Verhaltens der Emulsion im Boden bei induziertem Fluss wird schlechter vorhersagbar. % genauer, mehr +Das optimale Solubilisierungspotential liegt den Messwerten nach bei 2-5\% Tensid. Allerdings ist hier auch die Dichte und die Viskosität bereits stark erhöht. Durch die erhöhte Dichte kann die vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da der Druck im porösen Medium bei gleicher Fließrate ansteigt. Die Vorhersage des Verhaltens der Emulsion im Boden bei induziertem Fluss wird schwieriger. % genauer, mehr @@ -74,5 +73,5 @@ \section{Vergleich mit den Ergebnissen früherer Versuchsreihen} -In Abbildung \ref{pic:batch_med} sind die Messwerte der im Rahmen der Arbeit durchgeführten Versuche dargestellt und werden verglichen mit den Mittelwerten aus allen durchgeführten Versuchen, also den Werten aus früheren Versuchen und den Werten aus den hier beschriebenen Versuchen. Die getroffenen Aussagen können hier nochmal verbessert werden, durch die größere Anzahl an betrachteten Messpunkten. Bei betrachten des Solubilisierungspotentials wird deutlich, dass die Effktivität zunächst stark abnimmt. Ab einer Tensidkonzentration von einem Prozent verändert sich das Solubilisierungspotential nur noch langsam. Die Konzentration an gelöstem CS$_2$ steigt bis zu einer Tensidkonzentration von 2,25\% stark an. Bei höheren Tensidkonzentrationen verändert sich Konzentration an gelöstem DNAPL nicht mehr. Diese beiden Betrachtungen gemeinsam zeigen, dass mehr als zwei Prozent Tensid keinen weiteren positiven Nutzen haben. Im Gegenteil: Durch die gleichzeitig erhöhte Dichte der leichten Phase steigt die Gefahr von Mobilisierung, bei über fünf Prozent Tensid erhöht sich zudem die Viskosität stark. +In Abbildung \ref{pic:batch_med} sind die Messwerte der im Rahmen der Arbeit durchgeführten Versuche dargestellt und werden verglichen mit den Mittelwerten aus allen durchgeführten Versuchen, also den Werten aus früheren Versuchen und den Werten aus den hier beschriebenen Versuchen. Die getroffenen Aussagen können hier nochmal verbessert werden, durch die größere Anzahl an betrachteten Messpunkten. Bei betrachten des Solubilisierungspotentials wird deutlich, dass die Effektivität zunächst stark abnimmt. Ab einer Tensidkonzentration von einem Prozent verändert sich das Solubilisierungspotential nur noch langsam. Die Konzentration an gelöstem CS$_2$ steigt bis zu einer Tensidkonzentration von 2,25\% stark an. Bei höheren Tensidkonzentrationen verändert sich Konzentration an gelöstem DNAPL nicht mehr. Diese beiden Betrachtungen gemeinsam zeigen, dass mehr als zwei Prozent Tensid keinen weiteren positiven Nutzen haben. Im Gegenteil: Durch die gleichzeitig erhöhte Dichte der leichten Phase steigt die Gefahr von Mobilisierung, bei über fünf Prozent Tensid erhöht sich zudem die Viskosität stark. \begin{figure} Index: /diplomarbeit/Kapitel_4.tex =================================================================== --- /diplomarbeit/Kapitel_4.tex (revision 228) +++ /diplomarbeit/Kapitel_4.tex (revision 229) @@ -127,5 +127,5 @@ \subsubsection{Konzentration CS$_2$} -Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben vom Versuch in Feinsand bei 1\%Tensid und einer Fließrate von 1 ml. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26 g/L und 7 g/L), das heißt, der verwendete Farbstoff ist am Korngerüst sorbiert. Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ waren hier nicht mehr wesentlich erhöht (für die abgebildete Reihe max. 2 g/L). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6 g/L). +Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben vom Versuch in Feinsand bei 1\%Tensid und einer Fließrate von 1 ml. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26 g/L und 7 g/L), das heißt, der verwendete Farbstoff ist am Korngerüst sorbiert. Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ waren hier nicht mehr wesentlich erhöht (für die abgebildete Reihe max. \mbox{2 g/L}). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6 g/L). @@ -163,10 +163,10 @@ Da die erste Probe bei allen Versuchen bereits nach 0,7 Porenvolumen genommen worden war, sollte der erste Messwert in etwa der Oberflächenspannung von Wasser entsprechen. Das war jedoch nicht bei allen Proben der Fall. %Da die Phase bei auftreffen des Tensids auf den DNAPL zu quellen began, Teilweiße war schon in den ersten Proben Tensid enthalten und damit die Oberflächenspannnung leicht reduziert. -Nach einem Porenvolumen war die Oberflächenspannung auf das Minimum von 35mN/m abgesunken und blieb dort stabil. Nach dem Nachspülen von einem Porenvolumen Wasser stieg die Oberflächenspannung wieder auf das Ausgangsniveau an. Am Verlauf der Oberflächenspannung lässt sich sehr deutlich das frühe Umschalten auf Wasser bei den Säulen im ersten Versuch erkennen (Feinsand und Mittelsand, 1 ml/min). +Nach einem Porenvolumen war die Oberflächenspannung auf das Minimum von 35 mN/m abgesunken und blieb dort stabil. Nach dem Nachspülen von einem Porenvolumen Wasser stieg die Oberflächenspannung wieder auf das Ausgangsniveau an. Am Verlauf der Oberflächenspannung lässt sich sehr deutlich das frühe Umschalten auf Wasser bei den Säulen im ersten Versuch erkennen (Feinsand und Mittelsand, 1 ml/min). Im Mittelsand steigt die Oberflächenspannung nach dem Umschalten rasch an. Im Feinsand gibt es einen langsamen ungleichmäßigen Anstieg, was für eine langsame Verdünnung des Tensids spricht. \subsection*{Druck} -Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen \citep{Lee.2001, LUBW.2001}). +Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen \citep{Lee.2001, LUBW.2001}. und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen sowie zu nicht durchströmten, ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es gebietsweise zu Mobilisierung des DNAPLs kommen kann. @@ -174,10 +174,10 @@ Bezugsgröße muss der Differenzdruck sein, der sich bei Wasserspülung mit gleicher Fließgeschwindigkeit vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. %Das sollt ich vielleicht noch ausprobieren, hab ich da Druckwerte für Wasser??? Nein, für Col10 nur Wasser nach Sanierung... Für die beiden letzten Versuche sind Druckverlauf und daraus errechnete Permeabilität in den Abbildungen \ref{pic:pd10} und \ref{pic:pd12} grafisch dargestellt. -Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Tensidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an. Der gemessene Differenzdruck bei Säule 46 (siehe Abbildung \ref{pic:pd10} blieb über die gesamte Sanierungsdauer konstant. Hier liegt ein Messfehler vor, vermutlich verursacht durch Luftblasen in den Druckleitungen, sodass eine sinnvolle Auswertung nicht möglich ist. - - -\begin{figure} -\centering -\includegraphics[scale=1]{k_neu_10}%{col10_pd} +Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Tensidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an. Der gemessene Differenzdruck bei Säule 46 (siehe Abbildung \ref{pic:pd10}) blieb über die gesamte Sanierungsdauer konstant. Hier liegt ein Messfehler vor, vermutlich verursacht durch Luftblasen in den Druckleitungen, sodass eine sinnvolle Auswertung nicht möglich ist. + + +\begin{figure} +\centering +\includegraphics[scale=1]{k_neu_10} \caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 43 bis 45} \label{pic:pd10} @@ -186,5 +186,5 @@ \begin{figure} \centering -\includegraphics[scale=1]{k_neu_12}%{col12_pd} +\includegraphics[scale=1]{k_neu_12} \caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 51 bis 54} \label{pic:pd12} @@ -201,5 +201,5 @@ Die Berechnung wie in \citet{Childs.2004} verwendet, ist eine auf den dort verwendeten Sand und den DNAPL PCE angepasste, nichtlineare Regression, wie in \citet{Pennell.1996} beschrieben. -Der hier verwendete Sand ähnelt zwar dem von \citet{Childs.2004} vervendeten, jedoch werden zwei völlig unterschiedliche DNAPls DNAPLs untersucht. %Obwohl zumindest der hier verwendete Sand dem von Childs verwendeten ähnelt, ist die +Der hier verwendete Sand ähnelt zwar dem von \citet{Childs.2004} vervendeten, jedoch werden zwei völlig unterschiedliche DNAPls untersucht. %Obwohl zumindest der hier verwendete Sand dem von Childs verwendeten ähnelt, ist die Allgemein ist die Übertragung solcher auf nichtlinerarer Regression basierender Modelle auf andere Systeme schwierig, da ihre Lösung nicht immer eindeutig ist und außerdem gute Ausgangswerte benötigt werden. @@ -208,7 +208,7 @@ Die Versuche zeigten, dass es möglich ist mit einer sehr niedrigen Tensidkonzentration von 1\%, einen Großteil des residual vorliegenden CS$_2$ aus der Säule zu entfernen. Im Feinsand wurden hier etwas bessere Erfolge erzielt als im Mittelsand, was am höheren Gradienten liegen dürfte. Die analytisch bestimmte Wiederfindung lag im Feinsand durchschnittlich bei 80\%, im Mittelsand bei durchschnittlich 70\%. Auch der Austrag erfolgte im Feinsand schneller. So wurde hier nach zwei Porenvolumina 80\% des Gesamtaustrags erreicht, bei Mittelsand waren dagegen drei bis vier Porenvolumina nötig. -Erstaunlich war die im Vergleich zu den Batchtests deutlich erhöhte Solubilisierungsrate. Bei einer Tensidkonzentration von 1\% wurden in den Batchtest nur CS$_2$-Konzentrationen von weniger als 50g/L erreicht, in den Säulenversuchen lagen die Konzentrationen bei 200g/L und mehr. Da mit der anfänglich eigesetzen Tensidkonzentration von 2\% vergleichbare Werte erreicht wurden, lässt sich sagen, dass die Tensidkonzentration hier keinen großen Einfluss ausübt. Relevant ist dagegen die Art des verwendeten Sandes und die Fließrate. Im Mittelsand war eine Verbesserung der Solubilisierung durch die niedrigere Fließrate möglich. Eine gleichzeitige Erhöhung des Mobilisierungsrisikos konnte dabei nicht festgestellt werden. Dieses wurde vorrangig verursacht durch Inhomogenitäten im Sand. Die genauen Hintergründe, die zur Entstehung von vertikaler Mobilisierung führen sind weiter zu untersuchen und die kritische Fließrate bei der eine Wiederauflösung nicht mehr möglich ist, ist zu ermitteln. Dies ist besonders für Feinsand interessant, da hier auch bei einer Fließrate von 0,5 ml/min noch keine Mobilisierung beobachtet werden konnte. Ebenso weitere Einflussgrößen, wie Grenzflächenspannung und Vikosität. Diese Parameter können in einer Trapping Number zusammengefasst werden, um die Berechnung des Mobilisierungsrisikos zu ermöglichen. - - - - +Erstaunlich war die im Vergleich zu den Batchtests deutlich erhöhte Solubilisierungsrate. Bei einer Tensidkonzentration von 1\% wurden in den Batchtest nur CS$_2$-Konzentrationen von weniger als 50 g/L erreicht, in den Säulenversuchen lagen die Konzentrationen bei 200 g/L und mehr. Da mit der anfänglich eigesetzen Tensidkonzentration von 2\% vergleichbare Werte erreicht wurden, lässt sich sagen, dass die Tensidkonzentration hier keinen großen Einfluss ausübt. Relevant ist dagegen die Art des verwendeten Sandes und die Fließrate. Im Mittelsand war eine Verbesserung der Solubilisierung durch die niedrigere Fließrate möglich. Eine gleichzeitige Erhöhung des Mobilisierungsrisikos konnte dabei nicht festgestellt werden. Dieses wurde vorrangig verursacht durch Inhomogenitäten im Sand. Die genauen Hintergründe, die zur Entstehung von vertikaler Mobilisierung führen sind weiter zu untersuchen und die kritische Fließrate bei der eine Wiederauflösung nicht mehr möglich ist, ist zu ermitteln. Dies ist besonders für Feinsand interessant, da hier auch bei einer Fließrate von 0,5 ml/min noch keine Mobilisierung beobachtet werden konnte. Ebenso weitere Einflussgrößen, wie Grenzflächenspannung und Vikosität. Diese Parameter können in einer Trapping Number zusammengefasst werden, um die Berechnung des Mobilisierungsrisikos zu ermöglichen. + + + +