
November 2010 Doc ID 18153 Rev 1 1/31

UM1021
User manual

STM32F105/107xx USB Host library

Introduction
The STM32F105/7 USB host library is intended to provide a framework for USB host
applications development.

The library stands on top of the STM32F105/7 USB OTG peripheral low-level driver. It
implements the necessary software blocks that aim to facilitate the developement of USB
host applications.

The STM32F105/7 USB host stack library supports the following two USB standard class
applications:

■ Mass Storage Class (MSC) for accessing USB flash pendrives

■ Human Interface Device (HID) class for keyboard and mouse devices

www.st.com

http://www.st.com

Contents UM1021

2/31 Doc ID 18153 Rev 1

Contents

1 Folder organization of the USB host package . 6

2 USB host library architecture . 8

2.1 Library block diagram organization . 8

2.2 Description of the library core . 9

2.2.1 Core state machine . 9

2.2.2 Device enumeration . 10

2.2.3 Control transfer state machine . 11

2.2.4 USB I/O requests module . 11

2.2.5 Host channels control module . 12

2.3 Class drivers . 13

2.3.1 USB Mass Storage Class (MSC) driver . 13

2.3.2 USB Human Interface Device (HID) class driver for mouse and
keyboard devices . 17

3 Library user API and callback functions . 20

3.1 Library user API . 20

3.2 User callback functions . 20

3.2.1 Class callback functions . 20

3.2.2 Class-independent callback functions . 22

4 Demo firmware . 25

4.1 Mass storage class demo . 25

4.1.1 Software initializations . 25

4.1.2 Mass storage device enumeration . 25

4.1.3 Accessing mass storage device content . 26

4.1.4 Flash pendrive tests . 26

4.2 HID mouse and keyboard demos . 27

4.2.1 Initializations . 27

4.2.2 Mouse or keyboard device enumeration . 27

4.2.3 Mouse demo . 28

4.2.4 Keyboard demo . 28

4.3 Demo footprints . 28

UM1021 Contents

Doc ID 18153 Rev 1 3/31

5 Known limitations . 29

6 Revision history . 30

List of tables UM1021

4/31 Doc ID 18153 Rev 1

List of tables

Table 1. Core files. 7
Table 2. Class files . 7
Table 3. Device enumeration requests . 11
Table 4. USB I/O requests module . 12
Table 5. Host channels control module . 12
Table 6. Mass Storage Class modules . 13
Table 7. MSC core module . 15
Table 8. MSC BOT module . 15
Table 9. MSC SCSI commands . 16
Table 10. MSC filesystem interface functions. 16
Table 11. EFSL main API . 17
Table 12. HID class modules . 17
Table 13. MSC core module functions . 18
Table 14. Mouse and keyboard intialization & HID report decoding functions 19
Table 15. Tested flash pendrives . 27
Table 16. Demo footprints . 28
Table 17. Document revision history . 30

UM1021 List of figures

Doc ID 18153 Rev 1 5/31

List of figures

Figure 1. Folder organization . 6
Figure 2. USB host library block diagram organization . 8
Figure 3. Core state machine. 9
Figure 4. Device enumeration . 10
Figure 5. Block diagram organization of the MSC driver . 14
Figure 6. MS device enumeration . 25
Figure 7. MS device content access . 26
Figure 8. Mouse demo . 28
Figure 9. Keyboard demo . 28

Folder organization of the USB host package UM1021

6/31 Doc ID 18153 Rev 1

1 Folder organization of the USB host package

The STM32 USB host library package has the following folder organization:

Figure 1. Folder organization

The package folders are organized as follows:

■ Libraries:
– CMSIS: Cortex Microcontroller Software Interface Standard files
– STM32_USB_HOST_Library: USB Host library files
– STM32_USB_HOST_Driver: STM32 USB 2.0 OTG peripheral low-level driver
– STM32F10x_StdPeriph_Driver: STM32 standard peripheral drivers

■ Project:
– USB_HOST_EXAMPLES/HID_KBrd_Mouse : HID mouse and keyboard demo files
– USB_HOST_EXAMPLES/MSC: Mass Storage Class demo files

■ Utilities:
– STM32_EVAL/STM3210C_EVAL : STM3210C_EVAL evalboard functions

(configuration of GPIOs, LCD, clocks,..)
– Third_Party/efsl: EFSL FAT filesystem, used for the mass storage demo

STM32_USB_HOST_LIB_PACKAGE

Librairies

CMSIS

STM32_USB_HOST_Library

Class

HID

MSC

Core

STM32F10x_StdPeriph_Driver

Project

USB_HOST_Examples

HID_KBrd_Mouse

MSC

Utilities

STM32_EVAL

STM3210C_EVAL

Third_Party

efsl

STM32_USB_HOST_Driver

UM1021 Folder organization of the USB host package

Doc ID 18153 Rev 1 7/31

File organization of the USB host library

The USB host library folder “STM32_USB_HOST_Library” is composed of two main
subfolders:

■ Core: this folder contains the USB host library core files. Those files implement the
necessary functions, state machines and data structures required for:
– device detection and enumeration,
– USB Control transfer management,
– low-level functions for issuing control, bulk or interrupt USB transactions,
– configuration of the USB host channels.

■ Class: this folder contains the necessary files for USB class management. The USB host
library supports two USB classes:
– MSC: Mass Storage Class
– HID: Human Interface Device class for boot mouse and keyboard devices

The following tables detail the Core and Class files:

Table 1. Core files

File Description

usbh_core.c / .h
Implements the core, the device enumeration and the control transfer state
machines

usbh_stdreq.c / .h USB standard requests needed during device enumeration (USB chapter 9)

usbh_ioreq.c /.h
USB I/O requests: USB transaction requests for control, bulk and interrupt
pipes

usbh_hcs.c /.h USB host channel control (channel configuration, allocation, freeing...)

usbh_def.h Definitions used throughout the USB host library

Table 2. Class files

Class File Description

HID

usbh_hid_core.c /.h HID class management

usbh_hid_mouse.c ./h HID mouse specific routines

usbh_hid_keyboard.c /.h HID keyboard specific routines

MSC

usbh_msc_core.c /.h Mass Storage Class management

usbh_msc_bot.c ./.h BOT “Bulk Only Transport” protocol implementation

usbh_msc_scsi.c /.h SCSI standard command implementation

usbh_msc_fs_interface.c ./h Interface with a filesystem for file access operations

USB host library architecture UM1021

8/31 Doc ID 18153 Rev 1

2 USB host library architecture

2.1 Library block diagram organization
The USB host library has the following block diagram organization:

Figure 2. USB host library block diagram organization

As shown in the above figure, the USB host library is composed of two main parts: the core
and the class drivers.

The library core is composed of five main blocks:

■ core state machine

■ device enumeration

■ control transfer state machine

■ USB I/O requests

■ USB host channels control

For all class-related operations, the core state machine hands over operation to a specific
class driver. In the current release version of the USB host libray, two class drivers - HID and
MSC - are implemented. These class drivers use core layer services for communicating with
the low-level driver.

Both the core and the class drivers communicate with the user application mainly through
defined callback functions.

The various host library blocks are described below.

User application

Library user APIs & callback functions

HID

USB I/O requests

 enumeration

MSC

Class drivers

USB host channels control

STM32 USB OTG peripheral low-level driver

USB host library

Core

Control transfer state machine

Core
state machine

 Device

File
system

UM1021 USB host library architecture

Doc ID 18153 Rev 1 9/31

2.2 Description of the library core

2.2.1 Core state machine

The following figure describes the library state machine:

Figure 3. Core state machine

The core state machine shows 8 states:

■ HOST_IDLE: after host initialization , the core starts in this state, where it polls for a USB
device connection. This state is also entered when a device disconnection event is
detected, and also when an unrecovered error occurs.

■ HOST_ISSUE_CORE_RESET: this state is entered when a device is connected in order
to issue a USB bus RESET.

■ HOST_DEV_ATTACHED: the core enters in this state when a device is attached. When
a full-speed or low-speed device is detected, the state machine moves to the
HOST_ENUMERATION state.

■ HOST_ENUMERATION: in this state, the core proceeds with a basic enumeration of the
USB device. At the end of enumeration process, the default device configuration
(configuration 0) is selected.

HOST_ISSUE_

HOST_DEV_ATTACHED

HOST_ENUMERATION

HOST_CLASS_REQUEST

HOST_CLASS

HOST_CTRL_XFER

Host Initializations

Unrecovered error

HOST_USR_INPUT

HOST_ERROR_STATE
Device enumerated

User selects to enter
 in class operation

Control transfer

End of class
requests calls

Device disconnection
Event

USB Full/Low speed device attached

HOST_IDLE
CORE_RESET

USB Reset Issued

Device connected &

Device connection
Event

USB Reset Issued

USB host library architecture UM1021

10/31 Doc ID 18153 Rev 1

■ HOST_USR_INPUT: this is an intermediary state which follows the enumeration and
which includes a wait for user input in order to enter in USB class operation.

■ HOST_CLASS_REQUEST: starting from this state, the class driver takes over, and a
class request state machine is called in order to handle all the initial class control requests
(ex: Get_Report_Descriptor for HID). After finishing the needed class requests, the core
moves to the HOST_CLASS state.

■ HOST_CLASS: in this state, the class state machine is called for class-related operation
(non-control and control operation).

■ HOST_CTRL_XFER: this state is entered whenever there is a need for a control transfer.

■ HOST_ERROR_STATE: this state is entered whenever there is an unrecovered error
from any library state machine; in such case, a user-callback function is called (for
example for displaying an unrecovered error message). Then the host library is
reinitialized.

The core state machine process is implemented by function USBH_Process. This function
should be called periodically from the application main loop.

The initalization of the USB host library is implemented by function USBH_init. This function
should be called from the user application during initialization. More details regarding this
function are provided in Section 3.

2.2.2 Device enumeration

After detecting a full- or low-speed device, the host library proceeds with a basic
enumeration of the device.

The following diagram shows the different steps involved in the device enumeration.

Figure 4. Device enumeration

Get full device descriptor

Get first 8 bytes of device descriptor

USB reset

Set device address

Get configuration descriptor

Get string descriptors

Set device configuration

(MFC, product and serial number)

UM1021 USB host library architecture

Doc ID 18153 Rev 1 11/31

The enumeration state machine is implemented in library function USBH_HandleEnum,
which is called from the core state machine process.

USBH_HandleEnum function makes calls to the following library routines (implemented in
file usbh_stdreq.c):

Table 3. Device enumeration requests

Note: 1 USBH_SetCfg calls select the default configuration (configuration 0)

2 USBH_SetAddress calls set the device address to 0x1.

A user callback will be called at the end of enumeration phase in order to enable the user to
process the descriptor information (such as displaying descriptor data, for example). For
more details, please refer to Section 3.

2.2.3 Control transfer state machine

The control transfer state machine is entered from core or class driver whenever a control
transfer is required. This state machine implements the standard stages for a control
transfer, i.e. the setup stage, the optional data stage and, finally, the status stage.

The control transfer state machine is implemented in function USBH_HandleControl . It is
called from the core state machine process.

2.2.4 USB I/O requests module

The USB I/O requests module is located in the low layer of the core. It interfaces with the
USB low-level driver for issuing control, bulk or interrupt USB transactions.

Function Description

USBH_Get_CfgDesc Get configuration descriptor request

USBH_Get_DevDesc Get device descriptor request

USBH_Get_StringDesc Get string descriptor request

USBH_GetDescriptor Generic get descriptor request

USBH_SetCfg1) Set configuration request

USBH_SetAddress2) Set address request

USBH_ClrFeature Clear feature request

USB host library architecture UM1021

12/31 Doc ID 18153 Rev 1

Table 4 shows the main functions in the I/O request module. These functions are
implemented in file usbh_ioreq.c.

Table 4. USB I/O requests module

2.2.5 Host channels control module

The host channels control module is located in the lower layer of the core, it allows the
configuration of a host channel for a particular operation (control, bulk or interrupt transfer
type) also the allocation of a selected host channel to a device endpoint for creating a USB
pipe.

The main functions for USB channel control module are defined in Table 6. These functions
are implemented in file usbh_hcs.c.

Table 5. Host channels control module

Function Description

USBH_CtlSendSetup Issue a setup transaction

USBH_CtlSendData Issue a control data OUT stage transaction

USBH_CtlReceiveData Issue a control data IN stage transaction

USBH_CtlReq
high level function for issuing a control transfer (setup, data, status
stages)

USBH_BulkSendData Issue a bulk OUT transaction

USBH_BulkReceiveData Issue a bulk IN transaction

USBH_InterruptSendData Issue an interrupt OUT transaction

USBH_InterruptReceiveData Issue an interrupt IN transaction

Function Description

USBH_Open_Channel Open and configure a new host channel

USBH_Modify_Channel Modify an existing host channel

USBH_Alloc_Channel
Allocate a host channel to a device endpoint (creation of a USB
pipe)

USBH_Free_Channel Free a host channel

UM1021 USB host library architecture

Doc ID 18153 Rev 1 13/31

2.3 Class drivers
At the end of the enumeration, the core calls a specific class driver function to manage all
class-related operations.

Please note that the proper class driver selection is not based on the result of device
enumeration, but it is “pre-defined” when initializing the host library with function call
USBH_Init.

A class driver is implemented using a structure of type USBH_Class_cb_TypeDef:

typedef struct _Device_cb
{
 USBH_Status (*Init) (USB_OTG_CORE_HANDLE *pdev , USBH_DeviceProp_TypeDef *hdev);
 void (*DeInit) (USB_OTG_CORE_HANDLE *pdev , USBH_DeviceProp_TypeDef *hdev);
 USBH_Status (*Requests)(USB_OTG_CORE_HANDLE *pdev, USBH_DeviceProp_TypeDef\
*hdev);
 USBH_Status (*Machine) (USB_OTG_CORE_HANDLE *pdev , USBH_DeviceProp_TypeDef\
*hdev);

} USBH_Class_cb_TypeDef;

The structure members are described below:

■ Init: this function is called at the start-up of class operation for assuring all needed
initializations. This includes:
– parsing interface and endpoint descriptors (please note that the current USB host

library supports only one interface),
– opening and allocating host channels for non-control endpoints,
– call to a user callback (see Section 3), in case the device is not supported by the

class.

■ Denit: this function is called for freeing allocated host channels when reinitializing the
host. It is called when a device is unplugged or in case of unrecovered error.

■ Request: this function implements the class request state machine. It is called duringthe
HOST_CLASS_REQUEST state; its purpose is to process initial class requests.

■ Machine: implements the class core state machine. It is called during the HOST_CLASS
core state.

2.3.1 USB Mass Storage Class (MSC) driver

The Mass Storage Class driver is intended to support common USB flash pendrives, using
the BOT “Bulk-Only Transport” protocol.

The following modules, located in the class\MSC folder, are used to implement the MSC
driver:

Table 6. Mass Storage Class modules
Module Description

usbh_msc_core.c /.h MSC core state machine implementation

usbh_msc_bot.c ./.h BOT “Bulk-Only Transport” protocol implementation

usbh_msc_scsi.c /.h SCSI command implementation

usbh_msc_fs_interface.c ./h Functions for interfacing with a filesystem for file access operations

USB host library architecture UM1021

14/31 Doc ID 18153 Rev 1

The block diagram in Figure 5 shows the interactions between those modules.

Figure 5. Block diagram organization of the MSC driver

Operation flow description:

The MSC core state machine starts with the required device initializations, which are:

■ Issuing GET_MAX_LUN class request for detecting the number of device logical units
present on the device. Please note that only devices with one logical unit are supported.

■ Issuing BOT_RESET class requests for resetting the device BOT state machine.

■ Issuing SCSI commands: MODE_SENSE for detecting if the device is write-protected and
READ_CAPACITY for detecting the size of the flash pendrive.

After the above device initializations, the MSC core state machine calls the application user
callback.

The user callback can do any type of file access into the used filesystem. This operation is
translated into a logical page read or write operation. The filesystem interface provides the
connection between the used filesystem and the MSC driver.

At the SCSI level, the logical page read or write operations are converted into SCSI
commands: READ(10) or WRITE(10). Those commands are transfered to the flash pendrive
device using the “Bulk-Only Tranport” protocol.

The BOT layer state machine issues the required Bulk IN and Bulk OUT transactions using
the core USB I/O request module.

Each MSC module is described below.

User MSC application callback

Filesystem (EFSL)

SCSI commands

Filesystem interface

BOT state machine

MSC Class

MSC core state machine

File access (OPEN,READ,WRITE)

Page READ/WRITE

-READ(10) / WRITE(10)

BULK IN / OUT

Control Class requests:
-GET_MAX_LUN
-BOT_RESET

Filesystem init

-TEST_UNIT_READY
-MODE_SENSE(6)
-READ_CAPACITY(10)
-REQUEST_SENSE

USB I/O requests

User callbacks call

UM1021 USB host library architecture

Doc ID 18153 Rev 1 15/31

MSC core module:

The MSC core module “usb_msc_core.c” implements the MSC driver, which is defined in
the structure MSC_cb of type USBH_Class_cb_TypeDef (see section 2.3).

USBH_Class_cb_TypeDef MSC_cb =
{
 USBH_MSC_InterfaceInit,
 USBH_MSC_InterfaceDeInit,
 USBH_MSC_ClassRequest,
 USBH_MSC_Handle,
};

Table 7. MSC core module

MSC BOT module:

The MSC “Bulk-Only Transport” (BOT) module implements the transport protocol for
sending the SCSI commands (such as READ (10) or WRITE(10)). This module is
implemented in file “usbh_msc_bot.c”.

For details about the BOT protocol, please refer to the usb.org mass storage class
document.

The BOT module has the following functions:

Table 8. MSC BOT module

MSC SCSI module:

The SCSI “Small Computer System Interface” module “usb_msc_scsi.c” stands on top of
the BOT. It implements the set of SCSI commands required to access the flash pendrives.

Function Description

USBH_MSC_InterfaceInit
Parses interface and endpoints descriptors and configures
host channels (bulk IN and bulk OUT pipes)

USBH_MSC_InterfaceDeInit De-initialization routine (freeing host channels)

USBH_MSC_ClassRequest
In case of MSC, this function only moves the library core state
machine to the HOST_CLASS state

USBH_MSC_Handle Implements the MSC handler core state machine

USBH_MSC_Issue_BOTReset Issues a BOT reset class request

USBH_MSC_Issue_GETMaxLUN Issues a GET_MAX_LUN class request

USBH_MSC_ErrorHandle MSC error handling

Function Description

USBH_MSC_Init Initialize BOT state machine

USBH_MSC_HandleBOTXfer BOT transfer state machine

USB host library architecture UM1021

16/31 Doc ID 18153 Rev 1

The implemented commands are:

Table 9. MSC SCSI commands

MSC filesystem interface module

The MSC filesystem interface module “usbh_msc_fs_interface.c” allows interfacing of
filesystems with the MSC driver. This module should be ported to the selected filesystem.

The current USB host library package comes with the open source, EFSL FAT filesystem
support (see next section for an overview about the EFSL API).

The implemented functions in the filesystem interface are:

Table 10. MSC filesystem interface functions

Note: For the EFSL filesystem, the page size is fixed to 512 bytes. Flash pendrives with higher
page granularity are not supported.

EFSL filesystem overview

The EFSL “Embedded Filesystem Library” is an open source library for filesystems. It is
intended for embedded devices and supports the Microsoft FAT12, 16 and 32 filesystems.

The following table summarizes the EFSL main API functions. For more details about EFSL,
please refer to http://efsl.be/

Function Description

USBH_MSC_Read10 Command for logical block read

USBH_MSC_Write10 Command for logical block write

USBH_MSC_TestUnitReady Command for checking device status

USBH_MSC_ReadCapacity10 Command for requesting the device capacity

USBH_MSC_ModeSense6
Command for checking the Write-protect status of the mass
storage device

USBH_MSC_RequestSense Command for getting error information

Function Description

if_initInterface
Allows initalization of the filesystem (for example, reading
capacity of flash pendrive)

if_readBuf Interface function for a logical page read

if_writeBuf Interface function for a logical page write

if_TestUnitReady Interface function for testing if unit is ready

if_RequestSense
Interface function for requesting error information using SCSI
command Request Sense

UM1021 USB host library architecture

Doc ID 18153 Rev 1 17/31

Table 11. EFSL main API

2.3.2 USB Human Interface Device (HID) class driver for mouse and
keyboard devices

The HID class implementation in v1.0 of the USB host library is intended to support HID
boot mouse and keyboard devices.

HID reports are received using the interrupt IN transfer.

The following modules, located in class\HID folder, are used to implement the HID class:

Table 12. HID class modules

The main functions of each module are described below.

HID class core:

The HID core module “usb_hid_core.c” implements the HID class driver structure HID_cb of
type USBH_Class_cb_TypeDef (see section 2.3).

USBH_Class_cb_TypeDef HID_cb =
{
 USBH_HID_InterfaceInit,
 USBH_HID_InterfaceDeInit,
 USBH_HID_ClassRequest,
 USBH_HID_Handle
};

The following table summarizes the functions implemented in the HID core module.

Function Prototype Description

efs_init esint8 efs_init(EmbeddedFileSystem *efs, eint8*
opts);

Initializes the filesystem

file_fopen esint8 file_fopen(File *file, FileSystem *fs,
eint8 *filename, eint8 mode);

Opens a file

file_fclose esint8 file_fclose(File *file); Closes a file

file_read
euint32 file_read (File *file, euint32 size,

euint8 *buf);
Reads a file

file_write
euint32 file_write(File *file, euint32 size,

euint8 *buf);
Writes a file

rmfile esint16 rmfile(FileSystem *fs,euint8* filename); Removes file

mkdir esint8 mkdir(FileSystem *fs,eint8* dirname); Creates directory

ls_openDir
esint8 ls_openDir(DirList *dlist,FileSystem

fs,eint8 dirname);
Opens directory

ls_getNext esint8 ls_getNext(DirList *dlist); Gets next file in directory

file (module) Description

usbh_hid_core.c /.h This module implements the HID class core state machine

usbh_hid_mouse.c ./h HID mouse specific routines

usbh_hid_keyboard.c /.h HID keyboard specific routines

USB host library architecture UM1021

18/31 Doc ID 18153 Rev 1

Table 13. MSC core module functions

HID mouse & keyboard specific management:

The detection of mouse or keyboard device will be done when parsing interface descriptor in
function USBH_HID_InterfaceInit.

The specific initialization for each type of device and the decoding of the received report IN
data is done by two functions which are declared in a structure of type HID_cb_TypeDef,
which is defined as follows:

typedef struct HID_cb
{
 void (*Init) (void);
 void (*Decode) (uint8_t *data);

} HID_cb_TypeDef;

The implementation of the above structures in case a mouse or keyboard is respectively
found in HID_MOUSE_cb and HID_MOUSE_cb is as follows:

HID_cb_TypeDef HID_MOUSE_cb =
{
 MOUSE_Init,
 MOUSE_Decode,
};
HID_cb_TypeDef HID_KEYBRD_cb=
{
 KEYBRD_Init,
 KEYBRD_Decode
};

Function Description

USBH_HID_InterfaceInit
Parses interface and endpoint descriptors and configures a
host channel in order to have an interrupt IN pipe (for getting
HID reports)

USBH_HID_InterfaceDeInit Frees the allocated interrupt IN pipe

USBH_HID_ClassRequest
Implements a state machine of the required class requests for
HID mouse and keyboard devices (ex: getting HID report
descriptors, setting IDLE time, setting Protocol).

USBH_HID_Handle
HID class core state machine (processing of interrupt IN
transfers)

USBH_Get_HID_ReportDescriptor Class request for getting HID report descriptor

USBH_ParseClassDesc Function used for parsing HID report descriptor

USBH_Set_Idle Class request for setting IDLE time

USBH_Set_Report
Class request for sending Report OUT data (not used in the
demonstration software)

USBH_Set_Protocol Class request for setting the HID protocol: Boot or Report(1)

1. USB_Set_Protocol is called to set the Boot protocol mode.

UM1021 USB host library architecture

Doc ID 18153 Rev 1 19/31

Table 14. Mouse and keyboard intialization & HID report decoding functions

Function Description

MOUSE_Init Initialization routine for USB mouse

MOUSE_Decode
HID report decoding for mouse (decoding mouse x, y
positions, pressed buttons)

KEYBRD_Init Initialization routine for USB keyboard(1)

1. Selection of AZERTY or QWERTY keyboard is done through the defines #QWERTY_KEYBOARD ,
#AZERTY_KEYBOARD in file usbh_hid_keybrd.h.

KEYBRD_Decode
HID report decoding for keyboard (decoding of the key
pressed on the keyboard)

Library user API and callback functions UM1021

20/31 Doc ID 18153 Rev 1

3 Library user API and callback functions

3.1 Library user API
The library user API functions are limited to the following two functions:

■ void USBH_Process (void): this function implements core state machine process. It
should be called periodically from the user main loop.

■ USBH_Init: this function should be called for the initialization of the USB host hardware
and library.

USBH_Init has the following function prototype:

void USBH_Init(USB_OTG_CORE_HANDLE *pdev,

 USBH_Class_cb_TypeDef *class_cb,

 USBH_Usr_cb_TypeDef *usr_cb)

– pdev: pointer on the USB host core registers structure (needed for future use)
– class_cb: pointer to a class structure of type USBH_Class_cb_TypeDef. It can be

either MSC_cb for handling MSC devices or HID_cb for handling HID
mouse/keyboard devices.

– usr_cb: pointer to a structure of type USBH_Usr_cb_TypeDef. This structure
defines class-independent callbacks (see section 3.2.2).

3.2 User callback functions
User callbacks are declared in user template file usbh_usr.c.

Two types of user callbacks are defined:

■ Callback functions related to the class operations (MSC or HID)

■ Callbacks functions independent from class operations; they are mainly called during the
enumeration phase. These callbacks are defined in a structure of type
USBH_Usr_cb_TypeDef.

3.2.1 Class callback functions

MSC user callback functions

For MSC, the following callback is used: int USR_MSC_Application (void).

After the end of the class initializations, this function is called by the MSC state machine in
order to give hand to the user for filesystem access operations.

In this callback, the user can implement any access to the FAT filesystem (file open, file
read, file write...) using the EFSL filesystem API.

Also, the user can have access to an exported structure variable from the library MSC class
driver, USBH_MSC_Param. This variable provides some information about the mass
storage key.

UM1021 Library user API and callback functions

Doc ID 18153 Rev 1 21/31

This variable is defined using a structure of type MassStorageParameter_TypeDef defined
as follows:

typedef struct __MassStorageParameter
{
 uint32_t MSCapacity; /*MS device capacity in bytes */
 uint32_t MSSenseKey; /*Request Sense SCSI command returned value */
 uint16_t MSPageLength; /* MS device Page length */
 uint8_t MSBulkOutEp; /* Bulk OUT endpoint address */
 uint8_t MSBulkInEp; /*Bulk IN endpoint address */
 uint8_t MSWriteProtect; /*Write protection status, 0: non protected, 1:protected */
} MassStorageParameter_TypeDef;

HID user callback functions

For the HID class, the following callbacks are defined:

■ void USR_MOUSE_Init(void): user initialization for mouse application

■ void USR_KEYBRD_Init(void): user initializations for keyboard application

■ void USR_MOUSE_ProcessData(HID_MOUSE_Data_TypeDef *data): this callback is
called when an input parameter data of type HID_MOUSE_Data_TypeDef (see Note 1
below) is available.

■ void USR_KEYBRD_ProcessData (uint8_t data): this callback is called when a new
ASCII character is typed. The character is received in input parameter data.

Note: 1 HID_MOUSE_Data_TypeDef is defined as follows:

typedef struct _HID_MOUSE_Data
{
 uint8_t x;
 uint8_t y;
 uint8_t z; /* Not Supported */
 uint8_t button; /*Bitmap showing pressed buttons 1:pressed, 0: non pressed */
}
HID_MOUSE_Data_TypeDef;

Library user API and callback functions UM1021

22/31 Doc ID 18153 Rev 1

3.2.2 Class-independent callback functions

The class-independent callback functions are defined in a structure of type
USBH_Usr_cb_TypeDef defined as follows:

typedef struct _USBH_USR_PROP
{
 void (*Init)(void);
 void (*DeviceAttached)(void);
 void (*ResetDevice)(void);
 void (*DeviceDisconnected)(void);
 void (*OverCurrentDetected)(void);
 void (*DeviceSpeedDetected)(uint8_t DeviceSpeed);
 void (*DeviceDescAvailable)(void *);
 void (*DeviceAddressAssigned)(void);
 void (*ConfigurationDescAvailable)(USBH_CfgDesc_TypeDef *,
 USBH_InterfaceDesc_TypeDef *,
 USBH_EpDesc_TypeDef *);
 void (*ManufacturerString)(void *);
 void (*ProductString)(void *);
 void (*SerialNumString)(void *);
 void (*EnumerationDone)(void);
 USBH_USR_Status (*UserInput)(void);
 void (*USBH_USR_DeviceNotSupported)(void);
 void (*UnrecoveredError)(void);
}
USBH_Usr_cb_TypeDef;

The above callback functions are described below.

– Init: called during initialization by USBH_Init core function. In this function, the user
can implement any specific intialization related to his application.

– DeviceAttached: called when a USB device is attached. It can be useful to informthe
user of any device attachement using a display screen.

– DeviceReset: called after an USB reset is issued from the host.
– DeviceDisconnect: called when a device is disconnected.
– OverCurrentDetected: called when an overcurrent is detected on USB VBUS.
– DeviceSpeedDetected: called when the device speed is detected1).
– DeviceDescAvailable: called when a device descriptor is available2).
– DeviceAddressAssigned: called when the device address is assigned.
– ConfigurationDescAvailable: called when configuration, interface and endpoints

descriptors are available3).
– ManufacturingString: called when manufacturing string is extracted.
– ProductString: called when product string is extractcted.
– SerialNumString: called when serial num string is extracted.
– EnumerationDone: called when enumeration finished.
– UserInput: called after the end of the enumeration process, for prompting the user for

further action, such as pressing a button to start a host class operation4).
– USBH_USR_DeviceNotSupported: called when the detected device is not

supported by the current class driver.
– UnrecoveredError: called when the core state machine is in

“HOST_ERROR_STATE” state. It allows the user to handle any error, by displaying
an error message on the LCD screen, for example.

UM1021 Library user API and callback functions

Doc ID 18153 Rev 1 23/31

Note: 1 Device speed information is returned in the DeviceSpeed parameter. Possible values are:
0x1 for full-speed devices and 0x2 for low-speed devices.

2 Device descriptor information is returned in the pointer DeviceDesc, which points to a
structure of type USBH_DevDesc_TypeDef defined as follows:

typedef struct _DeviceDescriptor
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint16_t bcdUSB; /* USB Specification Number which device complies too */
 uint8_t bDeviceClass;
 uint8_t bDeviceSubClass;
 uint8_t bDeviceProtocol;
 uint8_t bMaxPacketSize;
 uint16_t idVendor; /* Vendor ID (Assigned by USB Org) */
 uint16_t idProduct; /* Product ID (Assigned by Manufacturer) */
 uint16_t bcdDevice; /* Device Release Number */
 uint8_t iManufacturer; /* Index of Manufacturer String Descriptor */
 uint8_t iProduct; /* Index of Product String Descriptor */
 uint8_t iSerialNumber; /* Index of Serial Number String Descriptor */
 uint8_t bNumConfigurations; /* Number of Possible Configurations */
}
USBH_DevDesc_TypeDef;

Library user API and callback functions UM1021

24/31 Doc ID 18153 Rev 1

3 Device configuration information (config, interface and endpoint descriptors) are returned
with pointers on structures USBH_CfgDesc_TypeDef, USBH_InterfaceDesc_TypeDef
and USBH_EpDesc_TypeDef defined as follows:

typedef struct _ConfigurationDescriptor
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint16_t wTotalLength;
 uint8_t bNumInterfaces;
 uint8_t bConfigurationValue;
 uint8_t iConfiguration;
 uint8_t bmAttributes;
 uint8_t bMaxPower;
}
USBH_CfgDesc_TypeDef;

typedef struct _InterfaceDescriptor
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint8_t bInterfaceNumber;
 uint8_t bAlternateSetting; /* Value used to select alternative setting */
 uint8_t bNumEndpoints; /* Number of Endpoints used for this interface */
 uint8_t bInterfaceClass; /* Class Code (Assigned by USB Org) */
 uint8_t bInterfaceSubClass; /* Subclass Code (Assigned by USB Org) */
 uint8_t bInterfaceProtocol; /* Protocol Code */
 uint8_t iInterface; /* Index of String Descriptor Describing this
interface */

}
USBH_InterfaceDesc_TypeDef;

typedef struct _EndpointDescriptor
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint8_t bEndpointAddress; /* indicates what endpoint this descriptor is
describing */
 uint8_t bmAttributes; /* specifies the transfer type. */
 uint16_t wMaxPacketSize; /* Maximum Packet Size this endpoint is capable of
sending or receiving */
 uint8_t bInterval; /* is used to specify the polling interval of certain
transfers. */
}
USBH_EpDesc_TypeDef;

4 In order to move the core state machine to HOST_CLASS_REQUEST state, UserInput
callback should return the value USBH_USR_RESP_OK of type USBH_USR_Status

typedef enum {
 USBH_USR_NO_RESP = 0, /*no response from user */
 USBH_USR_RESP_OK = 1,
}
USBH_USR_Status;

UM1021 Demo firmware

Doc ID 18153 Rev 1 25/31

4 Demo firmware

4.1 Mass storage class demo

4.1.1 Software initializations

The following code extract from main.c file shows the initializations required before calling
the USBH_Process for managing the core state machine.

USB_Init is called with parameters defining the class driver, which is the MSC class driver,
and also the user callbacks.

int main(void)
{

/* Setup STM32 Hardware Configuration */
 BSP_Init();

/* Init Host Library */
USBH_Init(&USB_OTG_FS_dev, &MSC_cb , &USR_Callbacks);

 while (1)
 {
 /* Host Task handler */
 USBH_Process();
 }
}

4.1.2 Mass storage device enumeration

When attaching a full-/low-speed device to the STM3210C_eval board, the LCD displays the
following text (for example, when plugging the Kingston DataTraveler G2 flash pendrive):

Figure 6. MS device enumeration

> DEVICE ATTACHED
> DEVICE IS FULL SPEED

> DEVICE SUPPORTS MASS STORAGE CLASS

VID = 0951h
PID = 1624h
NumEndpoints = 2

Manufacturer : Kingston
Product : DataTraveler G2
Serial Number : 001CC0EC309BF9C196A50D64

> ENUMERATION COMPLETED

--
To see the root content of the disk :
‘ Press Key B3 ...’

STM32F105/7 USB HOST DEMO

Demo firmware UM1021

26/31 Doc ID 18153 Rev 1

4.1.3 Accessing mass storage device content

After the end of enumeration, pressing button B3 displays the screen below, which provides
the following information:

■ Flash pendrive capacity (in Mbytes)

■ Root folder files

Figure 7. MS device content access

Please note that, after browsing the mass storage device content, a simple text file
“HostDemo.txt” is written into the flash pendrive (assuming that it is not write-protected).

For testing file read access, the user can start an image slideshow on the LCD screen,
assuming that some bmp images are available in the root folder of the flash pendrive.

Note: 1 Some bmp images with LCD screen size are provided in the project folder.

2 If the device is write-protected, a warning message is displayed on the LCD screen.

3 Mass storage devices with multiple logical units are not supported (an error message is
displayed on the LCD screen).

4 If no bmp image is available in the flash pendrive root folder, a warning message is
displayed on the LCD screen and, after 2 seconds, the host re-initializes (restarts
enumeration of the flash pendrive).

4.1.4 Flash pendrive tests

Because an embedded USB host is considered limited, these interoperability tests:

1. Enumeration,

2. Cold Boot with device attached,

3. Hot detach/attach,

4. Browsing root content,

5. Creation of "hostdemo.txt" file,

6. Data read from device to TFT-LCD: images slide-show,

7. Messaging to TFT-LCD (no silent failure)

are successfully applied to the following table selection of various flash pendrives using the
STM32F105/7 USB host library and the demonstration provided with the mass storage
example.

STM32F105/7 USB HOST DEMO
* Size of the disk in MBytes:
--
1910

* Root folder has the following entries:
--

FILE1.TXT
FILE2.TXT
IMG1.BMP
IMG2.BMP

 To continue ‘Press key B3’

FILE3.BIN

UM1021 Demo firmware

Doc ID 18153 Rev 1 27/31

Table 15. Tested flash pendrives

4.2 HID mouse and keyboard demos

4.2.1 Initializations

Same as for mass storage devices (see section 4.1.1), except that the HID class driver is
selected in the USBH_Init function:

/* Init Host Library */

USBH_Init(&USB_OTG_FS_dev, &HID_cb , &USR_Callbacks);

4.2.2 Mouse or keyboard device enumeration

Similar to mass storage devices (see section 4.1.2).

Manufacturer Name Size VID PID

Kingston Data Traveler 2GB 2GB 0x0951 0x1603

Lexar JumpDrive Sport 265MB 0x05DC 0xA410

Lexar JumpDrive FireFly 265MB 0x05DC 0xA575

Lexar JumpDrive2.0 pro 256MB 0x05DC 0x0200

Memorex TravelDrive Classic 003C 512MB 0x08EC 0x0008

Memorex TravelDrive Classic 003B 2 GB 0x12F7 0x1A00

Sandisk USB Flash Drive 8 GB 0x0781 0x5541

Sandisk USB Flash memory 8 GB 0x0781 0x6545

Sandisk U3 Cruzer Micro -U3 1 GB 0x0781 0x5406

Sandisk Cruzer Colors+ 4 GB 0x0781 0x5170

Sandisk Cruzer Pro 1 GB 0x08EC 0x0507

Sandisk Cruzer Micro 512 MB 0x0781 0x5151

Kingmax USB2.0FlashDisk 2 GB 0x1687 0x6211

Netac USB Flash Disk 128 MB 0x0DD8 0XD202

PNY Attaché 2.0 128 MB 0x08EC 0x0012

PNY Attaché Pro 1 GB 0x13FF 0x1A23

Sony Micro Vault Tiny 2 GB 0x054C 0x02A5

Toshiba USB Flash memory 2 GB 0x0930 0x6545

Transcend JetFlash V30 1 GB 0x058F 0x6387

Corsair Flash Voyager Mini 8 GB 0x1B1C 0x0B29

Philips FM01FD00B 1 GB 0x0471 0X082B

Demo firmware UM1021

28/31 Doc ID 18153 Rev 1

4.2.3 Mouse demo

After mouse device enumeration, pressing button B3 displays the following screen, which
shows the mouse 3 buttons and the pointer (green cross).

Figure 8. Mouse demo

4.2.4 Keyboard demo

After keyboard enumeration, pressing button B3 displays an LCD screen where the user can
type some text:

Figure 9. Keyboard demo

4.3 Demo footprints
The following tables provide footprint data when the software is compiled using IAR EWARM
v5.50.5 with high optimizations for size:

Table 16. Demo footprints

USB HOST MODE
HID DEMO Device: Mouse

USB HOST HID DEMO

x

USB HOST MODE
HID DEMO Device: Keyboard

USB HOST HID DEMO

Hello testing azerty keyboard...

 Demo Code + RO data RAM
Mass Storage class demo ~32 Kb 6.4 Kb
HID mouse & keyboard demo ~24 Kb 5 Kb

UM1021 Known limitations

Doc ID 18153 Rev 1 29/31

5 Known limitations

The current version of the STM32F105/7 USB host stack has the following known
limitations:

1. It supports only two USB standard class applications, i.e:

a) Mass Storage Class (MSC) for accessing USB flash pendrives,

b) Human Interface Device (HID) class for keyboard and mouse devices.

2. It supports only one interface and one configuration selection (default config).

3. It does not support mass storage devices with multiple logical units.

4. It comes with the EFSL FAT filesystem support:

a) The page size is fixed to 512 bytes. Flash pendrives with higher page granularity
are not supported.

b) Long filenames and Unicode are not supported.

5. Very short delay between device detach/attach may result in abnormal operation.

6. Compatibility issues have been encountered with some devices (not listed in Table 15)
at the enumeration phase.

7. After connecting and disconnecting a non-supported class device and then attaching a
supported class device, enumeration is done properly, but the device cannot be
accessed. A device reset is needed.

Revision history UM1021

30/31 Doc ID 18153 Rev 1

6 Revision history

Table 17. Document revision history

Date Revision Changes

26-Nov-2010 1 Initial release.

UM1021

Doc ID 18153 Rev 1 31/31

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Folder organization of the USB host package
	Figure 1. Folder organization
	Table 1. Core files
	Table 2. Class files

	2 USB host library architecture
	2.1 Library block diagram organization
	Figure 2. USB host library block diagram organization

	2.2 Description of the library core
	2.2.1 Core state machine
	Figure 3. Core state machine

	2.2.2 Device enumeration
	Figure 4. Device enumeration
	Table 3. Device enumeration requests

	2.2.3 Control transfer state machine
	2.2.4 USB I/O requests module
	Table 4. USB I/O requests module

	2.2.5 Host channels control module
	Table 5. Host channels control module

	2.3 Class drivers
	2.3.1 USB Mass Storage Class (MSC) driver
	Table 6. Mass Storage Class modules
	Figure 5. Block diagram organization of the MSC driver
	Table 7. MSC core module
	Table 8. MSC BOT module
	Table 9. MSC SCSI commands
	Table 10. MSC filesystem interface functions
	Table 11. EFSL main API

	2.3.2 USB Human Interface Device (HID) class driver for mouse and keyboard devices
	Table 12. HID class modules
	Table 13. MSC core module functions
	Table 14. Mouse and keyboard intialization & HID report decoding functions

	3 Library user API and callback functions
	3.1 Library user API
	3.2 User callback functions
	3.2.1 Class callback functions
	3.2.2 Class-independent callback functions

	4 Demo firmware
	4.1 Mass storage class demo
	4.1.1 Software initializations
	4.1.2 Mass storage device enumeration
	Figure 6. MS device enumeration

	4.1.3 Accessing mass storage device content
	Figure 7. MS device content access

	4.1.4 Flash pendrive tests
	Table 15. Tested flash pendrives

	4.2 HID mouse and keyboard demos
	4.2.1 Initializations
	4.2.2 Mouse or keyboard device enumeration
	4.2.3 Mouse demo
	Figure 8. Mouse demo

	4.2.4 Keyboard demo
	Figure 9. Keyboard demo

	4.3 Demo footprints
	Table 16. Demo footprints

	5 Known limitations
	6 Revision history
	Table 17. Document revision history

