Show
Ignore:
Timestamp:
06/08/12 17:17:33 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Einfuehrung_Batch.tex

    r191 r192  
    8989 
    9090Wie bei Makroemulsionen können auch bei Mikroemulsionen weitere Unterscheidungen vorgenommen werden. Zum einen ist dies die Unterscheidung in O/W- und W/O-Mikroemulsion. 
    91 Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch konstanthalten einer Komponente lässt sich das System aber auf ein Quasiternäres System vereinfachen. 
    92 Dörfler beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematische die Bildung  von Mikroemulsion aus gequollenen inversen Mizellen
     91Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein Quasiternäres System vereinfachen. 
     92Dörfler \cite{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematische die Bildung  von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}
    9393Demnach gibt es für die Bildung von Mikroemulsion zwei interessante Bereiche im ternären Phasendiagramm. 
    9494Bereich 1: Hier liegt molekular gelöstes Tensid in Wasser unterhalb der CMC vor. Unterhalb der kritischen Konzentration ist die Solubilisierung von Cotensid gering, steigt aber bei Überschreiten der CMC sprunghaft an. 
    95 Bereich 2: Wasser und Tensid sind, zunächst in sehr geringem Umfang, in Cotensid gelöst. Durch Variation der Zusammensetzung Wasser/Tensid, steigt die Solubilisierung stark an. Es bilden sich sogenannte gequollene inverse Mizellen. Bedeutend für diese Art der Solubilisierung ist das Verhältnis von Cotensid zu Tensid. Durch Zugabe von Öl lassen sich nun Mikroemulsionen erzeugen. Enscheident ist ein hoher Anteil an Wasser und Öl und ein definiertes Verhältnis von Tensid zu Cotensid. Die Existenzbereiche für Mikroemulsion sind weiter abhängig vom chemischen Aufbau der Einzelkomponenten, sowie den Konzentrationsverhältnissen. %Dörfler S.526, 527 
     95Bereich 2: Wasser und Tensid sind, zunächst in sehr geringem Umfang, in Cotensid gelöst. Durch Variation der Zusammensetzung Wasser/Tensid, steigt die Solubilisierung stark an. Es bilden sich sogenannte gequollene inverse Mizellen. Bedeutend für diese Art der Solubilisierung ist das Verhältnis von Cotensid zu Tensid. Durch Zugabe von Öl lassen sich nun Mikroemulsionen erzeugen. Enscheident ist ein hoher Anteil an Wasser und Öl und ein definiertes Verhältnis von Tensid zu Cotensid. Die Existenzbereiche für Mikroemulsion sind weiter abhängig vom chemischen Aufbau der Einzelkomponenten, sowie den Konzentrationsverhältnissen. \\%Dörfler S.526, 527 
    9696 
     97\begin{figure} 
     98\includegraphics[width=\textwidth]{Mizellgebiete.png} 
     99\caption{links: Konzentrationsgebiete von Mizellen ($1$) und gequollenen inversen Mizellen ($2$) im ternären System Wasser-Tensid-Cotensid; rechts: Mikroemulsion im ternären System bei konstantem Ölgehalt, nach \cite{Dorfler.2002}} 
     100\label{pic:Mizellgebiete} 
     101\end{figure} 
    97102%Bilder aus Dörfler S.526, 527 
    98103 
    99 In der Regel ist zur Herstellung einer Mikroemulsion die Anwesenheit eines stärker hydrophoben Cosurfactants, zum Beispiel 
    100 eines höheren Alkohols, nötig. %Mollet S.110 
     104 
     105 
     106In der Regel ist zur Herstellung einer Mikroemulsion die Anwesenheit eines stärker hydrophoben Cotensids nötig. %Mollet S.110 
    101107In Ausnahmefällen reicht die Anwesenheit eines einzigen Tensides aus um sehr niedrige Grenzflächenspannungen und damit 
    102108Mikroemulsionen zu erhalten. Möglich ist dies bei ionischen Tensiden mit zwei Kohlenwasserstoffketten 
     
    104110und bei nichtionischen Tensiden in einem engen Temperaturbereich. In diesem  
    105111Temperaturbereich entspricht die Öl-löslichkeit der Wasserlöslichkeit. %S.111, 112 
    106 Es ist oft einfacher, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. 
    107 Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. 
     112Oft ist es einfacher, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. 
     113Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \cite{Mollet.2000} 
    108114 
    109115%Inversion von Emulsionen S.86-88 
    110116Bei Erhöhung der Temperatur nimmt die Hydratation der hydrophilen Gruppen des Tensids ab, wodurch die Wasserlöslichkeit sinkt. Der HLB-Wert wird kleiner.  
    111 Das heißt eine bei niedriger Temperatur gebildete O/W-Emulsion kann durch Temperaturerhöhung zu einer W/O-Emulsion invertieren. Eine bei hoher Temperatur gebildete W/O-Emulsion kann durch Temperaturerniedrigung zu einer O/W-Emulsion invertieren. Die Temperatur bei der der Phasenübergang stattfindet wird Phaseninversionstemperatur (PIT)genannt.  
     117Das heißt eine bei niedriger Temperatur gebildete O/W-Emulsion kann durch Temperaturerhöhung zu einer W/O-Emulsion invertieren. Eine bei hoher Temperatur gebildete W/O-Emulsion kann durch Temperaturerniedrigung zu einer O/W-Emulsion invertieren. Die Temperatur bei der der Phasenübergang stattfindet wird Phaseninversionstemperatur (PIT) genannt.  
    112118Bei der PIT erreicht die Grenzflächenspannung ein Minimum. Daher können beim Emulgieren in diesem Temperaturbereich sehr kleine Tröpfchen gebildet werden. 
    113 Die Inversion lässt sich dokumentieren durch messen des elektrischen Wiederstandes, der gegen das Volumenverhältniss $V_W/V_O$ aufgetragen wird. Am Inversionspunkt sinkt der Wiederstand schlagartig ab. %Dörfler S.525, 526 
     119Die Inversion lässt sich dokumentieren durch messen des elektrischen Wiederstandes, der gegen das Volumenverhältniss $V_W/V_O$ aufgetragen wird. Am Inversionspunkt sinkt der Wiederstand schlagartig ab. \cite{Dorfler.2002}%Dörfler S.525, 526 
    114120 
    115 Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt die das Binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar. So wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen, nämlich O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässsriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. 
     121Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar. So wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen, nämlich O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. 
     122 
     123\begin{figure} 
     124\includegraphics[width=\textwidth]{binar.png} 
     125\caption{Schnitt durch ein Zustandsdiagramm Wasser-Öl-Niotensid; ($1$) einphasiges Gebiet; zweiphasige Gebiet, das Tensid ist hier in der wässrigen (2) bzw. in der öligen (2') Phase gelöst; x Molenbruch, T Temperatur; nach \cite{Dorfler.2002}} 
     126\label{pic:Mizellgebiete} 
     127\end{figure} 
     128 
    116129 
    117130 
    118131\section{DNAPLs} 
    119132 
    120 DNAPLs zeichnen sich durch ihre speziefisch höhere Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetz werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften und der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen anlagern. Man spricht dann von Plops. Dies tritt vor allem auch im Grundwasserschwankungsbereich auf. Aus disen Reservoiren wird dann kontinuirlich eine kleine Menge freigesetzt und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit der Substanzen ist das Verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar. Daher ist es unabdigbar die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grunsätzliche Probleme. Zum einen liegt die DNAPl-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den aquifer oder ein oberflächliches Gewässer wieder dem Wasserkreislauf zugeführt. Auf Grund der schlechten Löslichkeit ist es in der zumeist nötig neben dem erhöhten Wasseraustausch mit Additiven zu arbeiten. Das heißt es wird an einer stromaufwärts eine Spüllösung mit einem Lösungsvermittelndem Agens in den Boden injiziert. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Tenside können auf zweierlei Arten den Austrag von DNAPL fördern: Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL, bedingt durch eine extrem geringe Grenzflächenspanung Zwischen NAPL und Wasser, als zusammenhängene Phase. Diese Methode gilt als sehr effizient, birgt jedoch auch Gefahren. Die freibewegliche Schwerphase ist hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der NAPL weiter absinkt, und einr horizontalen Mobilisierung unabhängig von der Pumpströmung des Grundwassers. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch Mizellen erhöht. 
     133DNAPLs zeichnen sich durch ihre speziefisch höhere Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetz werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften und der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen anlagern. Man spricht dann von Plops. Dies tritt vor allem auch im Grundwasserschwankungsbereich auf. Aus disen Reservoiren wird dann kontinuirlich eine kleine Menge freigesetzt und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit der Substanzen ist das Verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar. Daher ist es unabdigbar die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grunsätzliche Probleme. Zum einen liegt die DNAPl-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den aquifer oder ein oberflächliches Gewässer zurückgeführt. Auf Grund der schlechten Löslichkeit von DNAPLs ist es in der zumeist nötig neben dem erhöhten Wasseraustausch mit Additiven zu arbeiten. Das heißt es wird an einer stromaufwärts eine Spüllösung mit einem Lösungsvermittelndem Agens in den Boden injiziert. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Tenside können auf zweierlei Arten den Austrag von DNAPL fördern: Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL, bedingt durch eine extrem geringe Grenzflächenspanung zwischen NAPL und Wasser, als zusammenhängene Phase. Diese Methode gilt als sehr effizient, birgt jedoch auch Gefahren. Die freibewegliche Schwerphase ist hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der NAPL weiter absinkt, und einr horizontalen Mobilisierung unabhängig von der Pumpströmung des Grundwassers. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch Mizellen erhöht.