Show
Ignore:
Timestamp:
07/05/12 16:23:39 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Einfuehrung_Batch.tex

    r207 r208  
    44\section {Batchtests} 
    55 
    6 Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehendem Ausschluss äußerer Bedingungen miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch einzeln variieren, bei konstanten anderen Bedingungen. Im Rahmen von Vorversuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tenidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen dieser Arbeit wurden die Ergebnisse der dort erhaltenen Ergebnisse verfeinert. Es wurden  Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizell Concentration), sowie über eine große Konzentrationsspanne, mit Tensidgehalten von bis zu $10$ \%, durchgeführt. Im weiteren wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig  effektiver sind als ein Einzeltensid.  
     6Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehendem Ausschluss äußerer Einflüsse miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch einzeln variieren, bei konstanten anderen Bedingungen. Im Rahmen von Vorversuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tenidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen der vorliegenden Arbeit wurden die Ergebnisse der vorhergehenden Versuche überprüft und erweitert. Es wurden  Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizell Concentration), sowie über eine große Konzentrationsspanne, mit Tensidgehalten von bis zu $10$ \%, durchgeführt. Im weiteren wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig  effektiver sind als ein Einzeltensid.  
    77 
    88 
    99\section{Tenside} 
    1010 
    11 Es gibt kein Tensid, das für alle zu emulgierenden Chemikalien und unabhängig von Randbedingungen die optimale Wirkung zeigt. Die emulgierende Wirkung hängt unter anderem von der Art der zwei nicht mischbaren Phasen und  der Konzentration des eingesetzten Emulgators ab. Daneben  sind zumeist auch der Emulsionstyp, die Schaumentwicklung, die zeitliche Stabilität der Emulsion und die Querempfindlichkeit des Systems auf physikalische und chemische Einflüsse relevant. 
    12  Mollet \cite{Mollet.2000} beschreibt  allgemeine Richtlinien, die bei der Auswahl eines Tensides hilfreich sein können.  
     11Ein Tensid, das für alle zu emulgierenden Chemikalien und unabhängig von Randbedingungen die optimale Wirkung zeigt gibt es nicht. Die emulgierende Wirkung hängt unter anderem ab von der Art der zwei nicht mischbaren Phasen und  der Konzentration des eingesetzten Emulgators. Daneben  sind zumeist auch der Emulsionstyp, die Schaumentwicklung, die zeitliche Stabilität der Emulsion und die Querempfindlichkeit des Systems auf physikalische und chemische Einflüsse relevant. 
     12 Mollet \cite{Mollet.2000} beschreibt  allgemeine Richtlinien, die bei der Auswahl eines Tensides hilfreich sein können:  
    1313 
    1414 
    1515   \begin{enumerate} 
    1616        \item 
    17         {Tenside sollten eine Gute Oberflächenaktivität haben und eine niedrige Oberflächenspannung erzeugen. Das Tensid muss rasch in  die Oberfläche migrieren. Es muss eine Balance zwischen hydrophilen und hydrophoben Gruppen bestehen, eine zu starke Löslichkeit in einer der Phasen hingegen beeinträchtigt die Wirksamkeit.} 
     17        {Tenside sollten eine gute Oberflächenaktivität haben und eine niedrige Oberflächenspannung erzeugen. Das Tensid muss rasch an  die Grenzfläche migrieren. Es muss eine Balance zwischen hydrophilen und hydrophoben Gruppen bestehen, da eine zu starke Löslichkeit in einer der Phasen die Wirksamkeit beeinträchtigt.} 
    1818        \item 
    19         {Allein oder mit vorhandenen adsorbierenden Molekülen einen kondensierten Film an der Grenzfläche bilden. Dann                 haben  die hydrophoben Gruppen im Grenzflächenfilm einer O/W-Emulsion starke laterale                          Wechselwirkungen.} 
     19        {Es muss einen kondensierten Film an der Grenzfläche bilden. Dann haben  die hydrophoben Gruppen im Grenzflächenfilm einer O/W-Emulsion starke laterale       Wechselwirkungen.} 
    2020        \item 
    2121        {Es muss so schnell zur Grenzfläche migrieren, dass die Grenzflächenspannung beim Herstellen der Emulsion                       genügend erniedrigt wird.} 
     
    3636%Welcher HLB-Bereich für welchen Verwendungszweck: Tabelle Dörfler S.340, Mollet S.70 
    3737 
    38 Wie gut ein Tensid Wasser bzw. Öl gelöst werden kann, wird häufig über die Hydrophilic-Lipophilic-Balance (HLB-Wert) ausgedrückt.  
    39 Ein bestimmter Stoff lässt sich nur in einem abgesteckten  HLB-Bereich emulgieren. Der optimale HLB lässt sich am effektivsten durch Mischen vom  lipophilem und hydrophilem Emulgator der selben chemischen Klasse finden. Ein Beispiel hierfür wären Span (Sorbitanfettsäureester) und Tween (Polysorbate: mit Polyethylenglycol veretherte Spans). \cite{Mollet.2000} 
     38Wie gut ein Tensid in Wasser bzw. Öl gelöst werden kann, wird häufig über die Hydrophilic-Lipophilic-Balance (HLB-Wert) ausgedrückt.  
     39Ein bestimmter Stoff lässt sich nur in einem abgesteckten  HLB-Bereich emulgieren. Der optimale HLB lässt sich am effektivsten durch Mischen vom  lipophilem und hydrophilem Emulgator der selben chemischen Klasse finden. Ein Beispiel hierfür wären Span (Sorbitanfettsäureester) und Tween (Polysorbate: mit Polyethylenglycol veretherte Spans). \cite{Mollet.2000}. 
    4040 %Eine Übersicht über Mischungen mit unterschiedlicher Zusammensetzung und dem resultierenden HLB-Wert gibt Tabelle %2.6 Mollet. 
    4141Für ionische Tenside wird der HLB oft vom Hersteller angegeben. Ist der HLB-Wert eines Tensides nicht bekannt, lässt er sich zum Beispiel mit der Inkrementmethode nach Davies abschätzen: ${HLB = 7 + \sum H + \sum L}$ 
     
    6666 
    6767 
    68 Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle.  Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der Selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an verschiedene Tenside mit gleichem HLB-Wert zu untersuchen, bzw. diesen gegenenfalls einzustellen.  
    69 Des weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie spielt das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden. \cite{Dorfler.2002}%Dörfler S.485 
     68Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle.  Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der Selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an verschiedene Tenside mit gleichem HLB-Wert zu untersuchen, bzw. diesen gegenenfalls einzustellen. \\ 
     69Des weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie ist  das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden. \cite{Dorfler.2002}.%Dörfler S.485 
    7070\\ 
    7171 
    7272Die Stabilität von Emulsionen hängt wesentlich davon ab, wie stark die anziehenden und abstoßenden Kräfte im Grenzschichtfilm sind. Hilfreich ist häufig eine Mischung aus öl- und wasserlöslichen Tensiden, da durch die zwischengelagerten öl-löslichen Tenside die Abstoßung der polaren Kopfgruppen der wasserlöslichen Tenside reduziert wird und somit die Packungsdichte steigt.  
    73 Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei  Polymeren, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreiten der Fall. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in  der Regel auch eine erhöhte Viskosität.  \cite{Mollet.2000} 
    74 Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale. \cite{Dorfler.2002} %Dörfler S.522, 523  
     73Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei  Polymeren, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreiten der Fall. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in  der Regel auch eine erhöhte Viskosität.  \cite{Mollet.2000}. 
     74Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale. \cite{Dorfler.2002}. %Dörfler S.522, 523  
    7575 
    7676Weiter Stabilitätsfördernd wirkt sich auch die Erhöhung der Viskosität aus. Daher sind höher konzentrierte Emulsionen in der Regel stabiler als verdünnte. Die Viskosität lässt sich aber auch durch Zugabe von Verdickungsmittel erreichen. 
    77 Üblich sind Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate \cite{Mollet.2000}. %Mollet S.85 
     77Üblich sind nach Mollet  \cite{Mollet.2000} Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate. %Mollet S.85 
    7878Stabilisatoren, die nicht in die innere Phase eindringen, aber die die Emulsionströpfchen umhüllen und in Schwebe halten, nennt man Schutzkolloide.\\ 
    7979 
    8080Die höchste Stabilität wird in Mikroemulsionen erreicht, da diese definitionsgemäß thermodynamisch stabil sind. 
    81 Mikroemulsionen lassen sich nach folgenden Kriterien nach \cite{Dorfler.2002} erkennen
     81Mikroemulsionen lassen sich nach folgenden Kriterien erkennen \cite{Dorfler.2002}
    8282\begin{itemize} 
    8383\item{Spontane Bildung} 
     
    8989\item{ausgeprägtes Solubilisierungs- und Lösevermögen} 
    9090\end{itemize} 
    91 %Dörfler S.525 
     91 %Dörfler S.525 
    9292 
    9393Wie bei Makroemulsionen können auch bei Mikroemulsionen weitere Unterscheidungen vorgenommen werden. Zum einen ist dies die Unterscheidung in O/W- und W/O-Mikroemulsion. 
    94 Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein Quasiternäres System vereinfachen. 
    95 Dörfler \cite{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematische die Bildung  von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. 
     94Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein quasiternäres System vereinfachen. 
     95Dörfler \cite{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematisch die Bildung  von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. 
    9696Demnach gibt es für die Bildung von Mikroemulsion zwei interessante Bereiche im ternären Phasendiagramm. 
    97 \mbox{Bereich 1}: Hier liegt molekular gelöstes Tensid in Wasser unterhalb der CMC vor. Unterhalb der kritischen Konzentration ist die Solubilisierung von Cotensid gering, steigt aber bei Überschreiten der CMC sprunghaft an. 
     97\mbox{Bereich 1}: Hier liegt molekular gelöstes Tensid in Wasser unterhalb der CMC vor. Unterhalb der kritischen Konzentration ist die Solubilisierung von Cotensid gering, steigt aber bei Überschreiten der CMC (ck) sprunghaft an. 
    9898\mbox{Bereich 2}: Wasser und Tensid sind, zunächst in sehr geringem Umfang, in Cotensid gelöst. Durch Variation der Zusammensetzung Wasser/Tensid, steigt die Solubilisierung stark an. Es bilden sich sogenannte gequollene inverse Mizellen. Bedeutend für diese Art der Solubilisierung ist das Verhältnis von Cotensid zu Tensid. Durch Zugabe von Öl lassen sich nun Mikroemulsionen erzeugen. Enscheident ist ein hoher Anteil an Wasser und Öl und ein definiertes Verhältnis von Tensid zu Cotensid. Die Existenzbereiche für Mikroemulsion sind weiter abhängig vom chemischen Aufbau der Einzelkomponenten, sowie den Konzentrationsverhältnissen. \\%Dörfler S.526, 527 
    9999 
     
    109109In der Regel ist zur Herstellung einer Mikroemulsion die Anwesenheit eines stärker hydrophoben Cotensids nötig. %Mollet S.110 
    110110In Ausnahmefällen reicht die Anwesenheit eines einzigen Tensides aus um sehr niedrige Grenzflächenspannungen und damit 
    111 Mikroemulsionen zu erhalten. Möglich ist dies bei ionischen Tensiden mit zwei Kohlenwasserstoffketten 
     111Mikroemulsionen zu erhalten. Möglich ist dies laut Mollet \cite{Mollet.2000} bei ionischen Tensiden mit zwei Kohlenwasserstoffketten 
    112112%, zum Beispiel Ethyl-Hexyl-Sulfobernsteinsäure (Aerosol OT),  
    113113und bei nichtionischen Tensiden in einem engen Temperaturbereich. In diesem  
    114114Temperaturbereich entspricht die Öl-löslichkeit der Wasserlöslichkeit. %S.111, 112 
    115 Oft ist es einfacher, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. 
    116 Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \cite{Mollet.2000} 
     115Die Erkenntnissen aus Abbildung \ref{pic:Mizellgebiete} lassen darauf schliessen, dass es einfacher ist, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. 
     116Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \cite{Mollet.2000}. 
    117117 
    118118%Inversion von Emulsionen S.86-88 
     
    120120Das heißt eine bei niedriger Temperatur gebildete O/W-Emulsion kann durch Temperaturerhöhung zu einer W/O-Emulsion invertieren. Eine bei hoher Temperatur gebildete W/O-Emulsion kann durch Temperaturerniedrigung zu einer O/W-Emulsion invertieren. Die Temperatur bei der der Phasenübergang stattfindet wird Phaseninversionstemperatur (PIT) genannt.  
    121121Bei der PIT erreicht die Grenzflächenspannung ein Minimum. Daher können beim Emulgieren in diesem Temperaturbereich sehr kleine Tröpfchen gebildet werden. 
    122 Die Inversion lässt sich dokumentieren durch messen des elektrischen Wiederstandes, der gegen das Volumenverhältniss $V_W/V_O$ aufgetragen wird. Am Inversionspunkt sinkt der Wiederstand schlagartig ab. \cite{Dorfler.2002}%Dörfler S.525, 526 
     122Die Inversion lässt sich dokumentieren durch messen des elektrischen Wiederstandes, der gegen das Volumenverhältniss $V_W/V_O$ aufgetragen wird. Am Inversionspunkt sinkt der Wiederstand schlagartig ab. \cite{Dorfler.2002}.%Dörfler S.525, 526 
    123123 
    124 Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar vgl. Abbildung \ref{pic:Mizellgebiete}. So wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen,  O/W-Mikroemulsion, W/O-Mikroemulsion und schwamm-artig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration
     124Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar, vgl. Abbildung \ref{pic:binar}. Es wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen,  O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. \cite{Dorfler.2002}
    125125 
    126126\begin{figure} 
    127127\includegraphics[width=\textwidth]{binar.png} 
    128128\caption{Schnitt durch ein Zustandsdiagramm Wasser-Öl-Niotensid; ($1$) einphasiges Gebiet; zweiphasige Gebiet, das Tensid ist hier in der wässrigen (2) bzw. in der öligen (2') Phase gelöst; x Molenbruch, T Temperatur; nach \cite{Dorfler.2002}} 
    129 \label{pic:Mizellgebiete
     129\label{pic:binar
    130130\end{figure} 
    131131 
     
    134134\section{DNAPLs} 
    135135 
    136 DNAPLs zeichnen sich durch ihre spezifisch hohe Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften, sowie der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen einlagern. Man spricht dann von Plops. Diese treten vor allem im Grundwasserschwankungsbereich auf. Aus diesen Pools und Plops wird  kontinuierlich eine kleine Menge DNAPL gelöst und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit dieser Substanzen ist das verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar. Daher ist es unabdingbar die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grundsätzliche Probleme. Zum einen liegt die DNAPL-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht, auf Grund der schlechten Löslichkeit von DNAPLs, häufig nicht aus. Daher ist es  nötig mit Additiven zu arbeiten. Das heißt es wird  eine Spüllösung mit einem Lösungsvermittelndem Zusatz in den Boden injiziert. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln.  
     136DNAPLs zeichnen sich durch ihre spezifisch hohe Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften, sowie der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen einlagern. Man spricht dann von Plops. Diese treten vor allem im Grundwasserschwankungsbereich auf. Aus diesen Pools und Plops wird  kontinuierlich eine kleine Menge DNAPL gelöst und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit dieser Substanzen ist das verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar. Daher ist es erforderlich die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grundsätzliche Probleme. Zum einen liegt die DNAPL-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht, auf Grund der schlechten Löslichkeit von DNAPLs, häufig nicht aus um mit vertretbarem Zeit- und Energieaufwand eine vollständige Sanierung herbeizuführen. Daher ist es  nötig mit Additiven zu arbeiten, welche die Auflösung und den Abtransport des DNAPLs fördern. Das heißt es wird eine Spüllösung mit einem Lösungsvermittelndem Zusatz in den Boden injiziert, die den DNAPL löst und Stromabwärts wieder abgepumpt werden kann. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Möglich ist es aber auch, den DNAPL im Boden abzubauen, zum Beispiel durch einbringen starker Oxidationsmittel. 
    137137 
    138 Tenside können auf zweierlei Arten den Austrag von DNAPL fördern: Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser, als zusammenhängende Phase. Diese Methode gilt als sehr effizient, birgt jedoch auch Gefahren. Die frei bewegliche Schwerphase ist hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, und einer horizontalen Mobilisierung, bei der sich der DNAPL unabhängig von der Pumpströmung des Grundwassers bewegt. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht
     138Tenside können auf zweierlei Arten den Austrag von DNAPLs fördern. Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL als zusammenhängende Phase, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser. Diese Methode gilt als sehr effizient, da die Gesamtmenge auf einmal transportiert wird und so nur ein bis zwei Porenvolumina Spüllösung benötigt werden. Die Mobilisierung birgt jedoch auch Gefahren. Aufgrund der einwirkenden Kräfte ist die frei bewegliche Schwerphase  hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, wenn die gravimetrischen Kräfte größer als die haltenden Kräfte werden. Ebenso besteht die Möglichkeit einer unerwünschten horizontalen Mobilisierung, bei der sich der DNAPL unabhängig von der Pumpströmung des Grundwassers bewegt. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht. Durch diesen Effekt kann die Löslichkeit um ein Vielfaches der ursprünglichen Löslichkeit gesteigert werden. Idealerweise bildet sich Mikroemulsion, die aufgrund ihrer Struktur und Eigenschaften wie eine reines  einphasiges Fluid behandelt werden kann, das heißt ein definiertes Fließverhalten aufweist. Diese Methode beansprucht mehr Zeit, da der DNAPL Schritt für Schritt gelöst wird, also mehrere Spülgänge notwendig sind. Die Effektivität im Vergleich zur Mobilisierung wird als geringer Eingestuft. Sie ist stark abhängig von der Art des DNAPL-Reservoirs, der Bodenart und -Struktur, sowie den Wechselwirkungen zwischen den flüssigen Phasen und mit der festen Phase