6 | | Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehendem Ausschluss äußerer Bedingungen miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch einzeln variieren, bei konstanten anderen Bedingungen. Im Rahmen von Vorversuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tenidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen dieser Arbeit wurden die Ergebnisse der dort erhaltenen Ergebnisse verfeinert. Es wurden Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizell Concentration), sowie über eine große Konzentrationsspanne, mit Tensidgehalten von bis zu $10$ \%, durchgeführt. Im weiteren wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig effektiver sind als ein Einzeltensid. |
---|
| 6 | Batchtest stellen den ersten Versuch zur Ermittlung der generellen Eignung eines Verfahrens dar. Die Reagentien, hier Tensid, DNAPL und Wasser, werden in ein Gefäß gegeben und vermischt. Dort reagieren sie unter weitgehendem Ausschluss äußerer Einflüsse miteinander. Die verschiedenen Einflussgrößen lassen sich im Versuch einzeln variieren, bei konstanten anderen Bedingungen. Im Rahmen von Vorversuchen wurde die Effizienz verschiedener Tenside untersucht. Für ausgewählte Tenidlösungen wurde der Einfluss von Fremdionen und der Tensidkonzentration ermittelt. Im Rahmen der vorliegenden Arbeit wurden die Ergebnisse der vorhergehenden Versuche überprüft und erweitert. Es wurden Versuchsreihen mit Tensidkonzentrationen im Bereich der CMC (Critical Mizell Concentration), sowie über eine große Konzentrationsspanne, mit Tensidgehalten von bis zu $10$ \%, durchgeführt. Im weiteren wurde versucht das Emulsionssystem zu optimieren durch den Zusatz von weiteren Additiven, da Mischungen häufig effektiver sind als ein Einzeltensid. |
---|
11 | | Es gibt kein Tensid, das für alle zu emulgierenden Chemikalien und unabhängig von Randbedingungen die optimale Wirkung zeigt. Die emulgierende Wirkung hängt unter anderem von der Art der zwei nicht mischbaren Phasen und der Konzentration des eingesetzten Emulgators ab. Daneben sind zumeist auch der Emulsionstyp, die Schaumentwicklung, die zeitliche Stabilität der Emulsion und die Querempfindlichkeit des Systems auf physikalische und chemische Einflüsse relevant. |
---|
12 | | Mollet \cite{Mollet.2000} beschreibt allgemeine Richtlinien, die bei der Auswahl eines Tensides hilfreich sein können. |
---|
| 11 | Ein Tensid, das für alle zu emulgierenden Chemikalien und unabhängig von Randbedingungen die optimale Wirkung zeigt gibt es nicht. Die emulgierende Wirkung hängt unter anderem ab von der Art der zwei nicht mischbaren Phasen und der Konzentration des eingesetzten Emulgators. Daneben sind zumeist auch der Emulsionstyp, die Schaumentwicklung, die zeitliche Stabilität der Emulsion und die Querempfindlichkeit des Systems auf physikalische und chemische Einflüsse relevant. |
---|
| 12 | Mollet \cite{Mollet.2000} beschreibt allgemeine Richtlinien, die bei der Auswahl eines Tensides hilfreich sein können: |
---|
68 | | Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle. Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der Selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an verschiedene Tenside mit gleichem HLB-Wert zu untersuchen, bzw. diesen gegenenfalls einzustellen. |
---|
69 | | Des weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie spielt das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden. \cite{Dorfler.2002}%Dörfler S.485 |
---|
| 68 | Neben dem HLB-Wert spielt auch der chemische Typ des Emulgators eine wichtige Rolle. Je ähnlicher der unpolare Rest dem Öl ist, umso wirksamer ist der Emulgator. Dabei ist der HLB-Wert auch bei unterschiedlichen chemischen Typen immer in etwa der Selbe. Ist der HLB-Wert eingegrenzt, bietet es sich daher an verschiedene Tenside mit gleichem HLB-Wert zu untersuchen, bzw. diesen gegenenfalls einzustellen. \\ |
---|
| 69 | Des weiteren wird die Solubilisierungsleistung durch die innere Struktur, die Mizellgeometrie, beeinflusst. Ein wichtiger Faktor für die Mizellgeometrie ist das Verhältnis der Kettenlänge zum Oberflächenbedarf der Kopfgruppe. Bei größer werdendem Verhältnis nimmt die Krümmung der Mizelloberfläche ab und die Packungsdichte der Kopfgruppen zu. Dieser Effekt kann verstärkt werden durch durch Erhöhung der Tensidkonzentration, Erhöhung der Ionenenstärke (bei ionischen Tensiden), Erniedrigung der Temperatur, Zugabe von nichtionogenen Cotensiden mit kleinen Kopfgruppen, Verlängerung der Kohlenwasserstoffketten der Tenside und durch Kopfgruppen mit geringerem Platzbedarf. Werden Kohlenwasserstoffe in die Mizelle solubilisiert, vergrößert sich die Oberflächenkrümmung der Mizelle wieder. Daher kann mit einer geringen Krümmung als Ausgangssituation eine höhere Solubilisierung erreicht werden. \cite{Dorfler.2002}.%Dörfler S.485 |
---|
73 | | Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei Polymeren, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreiten der Fall. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in der Regel auch eine erhöhte Viskosität. \cite{Mollet.2000} |
---|
74 | | Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale. \cite{Dorfler.2002} %Dörfler S.522, 523 |
---|
| 73 | Eine andere Möglichkeit ist der Einsatz von Makromolekülen, welche eine sterische Abschirmung bewirken. Dies ist zum Beispiel bei Polymeren, die die Eigenschaft haben auf der Wasseroberfläche spreiten, sprich sich zu einem dünnen Film auszubreiten der Fall. Ein Vorteil von Polymeren ist die Unempfindlichkeit auf Elektrolyte und die häufig gute Stabilität. Aber sie verursachen in der Regel auch eine erhöhte Viskosität. \cite{Mollet.2000}. |
---|
| 74 | Des Weiteren besteht die Möglichkeit, O/W-Emulsionen durch Feststoffe zu stabilisieren (Pickering-Emulsionen). Feststoffteilchen die besser durch Wasser als durch Öl benetzbar sind, lagern sich als Film um die emulgierten Öltröpfchen an. Die Stabilisierung kommt durch die unterschiedlichen Benetzungsverhältnisse von Wasser und Öl zustande. Als anorganische Materialien eignen sich Eisenoxide, Siliciumdioxide, Bariumsulfat und vor allem Tonminerale. \cite{Dorfler.2002}. %Dörfler S.522, 523 |
---|
77 | | Üblich sind Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate \cite{Mollet.2000}. %Mollet S.85 |
---|
| 77 | Üblich sind nach Mollet \cite{Mollet.2000} Cellulose, Gelatine, Casein, Stärke, Dextrine, Johannisbrotkernmehl, PVA, PVP, Xanthangummi, Acrylsäurepolymere, Traganth, Alginate. %Mollet S.85 |
---|
94 | | Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein Quasiternäres System vereinfachen. |
---|
95 | | Dörfler \cite{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematische die Bildung von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. |
---|
| 94 | Ein weiteres Unterscheidungskriterium ist der verwendete Tensidtyp: Anionisch, kationisch oder nichtionisch. In der Regel wird aber noch ein Cotensid zugesetzt, so dass ein System aus vier Komponenten, Öl, Wasser, Tensid und Cotensid vorliegt. Durch Konstanthalten einer Komponente lässt sich das System aber auf ein quasiternäres System vereinfachen. |
---|
| 95 | Dörfler \cite{Dorfler.2002} beschreibt ausgehend vom ternären System Wasser, Tensid, Cotensid schematisch die Bildung von Mikroemulsion aus gequollenen inversen Mizellen, vgl. Abbildung \ref{pic:Mizellgebiete}. |
---|
115 | | Oft ist es einfacher, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. |
---|
116 | | Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \cite{Mollet.2000} |
---|
| 115 | Die Erkenntnissen aus Abbildung \ref{pic:Mizellgebiete} lassen darauf schliessen, dass es einfacher ist, die richtige Zusammensetzung von Öl und Emulgator für die W/O-Mikroemulsion zu finden, als für die O/W-Emulsion. Daher bietet es sich an, zunächst eine W/O-Emulsion herzustellen und diese dann zu invertieren. |
---|
| 116 | Eine Phaseninversion kann durchgeführt werden, durch die Zugabe der Substanzen in einer bestimmten Reihenfolge, durch Änderung der Temperatur, oder durch Zugabe von Elektrolyten. \cite{Mollet.2000}. |
---|
124 | | Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar vgl. Abbildung \ref{pic:Mizellgebiete}. So wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen, O/W-Mikroemulsion, W/O-Mikroemulsion und schwamm-artig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. |
---|
| 124 | Nichtionische Mikroemulsionen benötigen, im Gegensatz zu ionische Mikroemulsionen, häufig kein Cotensid. Sie bestehen also aus nur drei Komponenten und lassen sich durch das Konstanthalten der Tensidkonzentration auf ein pseudobinäres System reduzieren. Hier spielt die Temperatur eine sehr viel größere Rolle als für ionischen Mikroemulsionen. Dörfler stellt das binäre System Wasser/Niotensid - Öl/Niotensid gegen die Tempratur schematisch dar, vgl. Abbildung \ref{pic:binar}. Es wird deutlich, dass verschiedene Typen von Mikroemulsion und Zweiphasengebiete unterschieden werden müssen, O/W-Mikroemulsion, W/O-Mikroemulsion und schwammartig aufgebaute kontinuierliche Mikroemulsion. In den Zweiphasengebieten koexistiert O/W-Mikroemulsion mit nahezu reiner Ölphase, bzw. W/O- Mikroemulsion mit wässriger Phase. Die kontinuierliche Mikroemulsion ist abhängig von Temperatur und Niotensidkonzentration. \cite{Dorfler.2002}. |
---|
136 | | DNAPLs zeichnen sich durch ihre spezifisch hohe Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften, sowie der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen einlagern. Man spricht dann von Plops. Diese treten vor allem im Grundwasserschwankungsbereich auf. Aus diesen Pools und Plops wird kontinuierlich eine kleine Menge DNAPL gelöst und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit dieser Substanzen ist das verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar. Daher ist es unabdingbar die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grundsätzliche Probleme. Zum einen liegt die DNAPL-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht, auf Grund der schlechten Löslichkeit von DNAPLs, häufig nicht aus. Daher ist es nötig mit Additiven zu arbeiten. Das heißt es wird eine Spüllösung mit einem Lösungsvermittelndem Zusatz in den Boden injiziert. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. |
---|
| 136 | DNAPLs zeichnen sich durch ihre spezifisch hohe Dichte und geringe Löslichkeit in Wasser aus. Diese Eigenschaften führen dazu, dass DNAPLs, wenn sie in der Umwelt freigesetzt werden, im Boden bzw. Grundwasser nach unten absinken und sich an undurchlässigen Schichten bevorzugt in Seen (Pools) zusammenlagern. Abhängig von den Stoffeigenschaften, sowie der Bodenart und -beschaffenheit kann sich der DNAPL aber auch in Bodenporen einlagern. Man spricht dann von Plops. Diese treten vor allem im Grundwasserschwankungsbereich auf. Aus diesen Pools und Plops wird kontinuierlich eine kleine Menge DNAPL gelöst und mit der Grundwasserströmung weitertransportiert. Aufgrund der häufig großen Schädlichkeit dieser Substanzen ist das verunreinigte Grundwasser über lange Zeitabschnitte (Jahrzehne bis Jahrhunderte) nicht nutzbar. Daher ist es erforderlich die Auflösung des DNAPLs zu beschleunigen. Dabei stellen sich grundsätzliche Probleme. Zum einen liegt die DNAPL-Quelle häufig in großen Tiefen und ist somit schlecht erreichbar. Dennoch haben sich hier die sogenannten Pump-and-Treat-Verfahren bewährt, bei denen der DNAPL durch abpumpen des Grundwassers gefördert wird. Das kontaminierte Wasser wird dann aufbereitet und in den Grundwasserleiter oder ein oberflächliches Gewässer zurückgeführt. Allein der erhöhte Wasseraustausch reicht, auf Grund der schlechten Löslichkeit von DNAPLs, häufig nicht aus um mit vertretbarem Zeit- und Energieaufwand eine vollständige Sanierung herbeizuführen. Daher ist es nötig mit Additiven zu arbeiten, welche die Auflösung und den Abtransport des DNAPLs fördern. Das heißt es wird eine Spüllösung mit einem Lösungsvermittelndem Zusatz in den Boden injiziert, die den DNAPL löst und Stromabwärts wieder abgepumpt werden kann. Dabei kann es sich zum Beispiel um Alkohole, Polymere oder Tenside handeln. Möglich ist es aber auch, den DNAPL im Boden abzubauen, zum Beispiel durch einbringen starker Oxidationsmittel. |
---|
138 | | Tenside können auf zweierlei Arten den Austrag von DNAPL fördern: Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser, als zusammenhängende Phase. Diese Methode gilt als sehr effizient, birgt jedoch auch Gefahren. Die frei bewegliche Schwerphase ist hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, und einer horizontalen Mobilisierung, bei der sich der DNAPL unabhängig von der Pumpströmung des Grundwassers bewegt. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht. |
---|
| 138 | Tenside können auf zweierlei Arten den Austrag von DNAPLs fördern. Zum einen kann der DNAPL mobilisiert werden. In diesem Fall bewegt sich der DNAPL als zusammenhängende Phase, bedingt durch eine extrem geringe Grenzflächenspannung zwischen DNAPL und Wasser. Diese Methode gilt als sehr effizient, da die Gesamtmenge auf einmal transportiert wird und so nur ein bis zwei Porenvolumina Spüllösung benötigt werden. Die Mobilisierung birgt jedoch auch Gefahren. Aufgrund der einwirkenden Kräfte ist die frei bewegliche Schwerphase hydraulisch kaum zu kontrollieren. Es besteht das Risiko einer vertikalen Mobilisierung, bei der der DNAPL in tiefer liegende Schichten absinkt, wenn die gravimetrischen Kräfte größer als die haltenden Kräfte werden. Ebenso besteht die Möglichkeit einer unerwünschten horizontalen Mobilisierung, bei der sich der DNAPL unabhängig von der Pumpströmung des Grundwassers bewegt. Diese Gefahren sind im Fall einer Solubilisierung des DNAPLs reduziert. Bei der Solubilisierung wird die Löslichkeit des DNAPLs im Wasser durch die Einlagerung kleiner DNAPL-Tröpfchen in Mizellen erhöht. Durch diesen Effekt kann die Löslichkeit um ein Vielfaches der ursprünglichen Löslichkeit gesteigert werden. Idealerweise bildet sich Mikroemulsion, die aufgrund ihrer Struktur und Eigenschaften wie eine reines einphasiges Fluid behandelt werden kann, das heißt ein definiertes Fließverhalten aufweist. Diese Methode beansprucht mehr Zeit, da der DNAPL Schritt für Schritt gelöst wird, also mehrere Spülgänge notwendig sind. Die Effektivität im Vergleich zur Mobilisierung wird als geringer Eingestuft. Sie ist stark abhängig von der Art des DNAPL-Reservoirs, der Bodenart und -Struktur, sowie den Wechselwirkungen zwischen den flüssigen Phasen und mit der festen Phase. |
---|