Show
Ignore:
Timestamp:
07/05/12 16:23:39 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Kapitel_1.tex

    r207 r208  
    55 
    66\subsection{Tenside} 
    7 Die hier untersuchten Tensidsysteme basierten auf einer Emulsion die mittels dem nichtionischen Tensid Brij 97 (Synonym: Brij O10, Sigma Aldrich) stabilisiert wurde. Dabei handelt es sich um einen Polyoxyethylenether des Oleylalkohols. Das ist ein einfach ungesättigter C$18$-Alkohol, verknüpft mit zehn Ethylenoxidgruppen. Die Strukturformel ist in Abbildung \ref{pic:Brij} dargestellt. Das Tensid ist gut wasserlöslich. Unter Rühren und leichter Temperaturerhöhung ließ sich problemlos eine zehnprozentige Tensidlösung herstellen. 
     7Die hier untersuchten Tensidsysteme basierten auf einer Emulsion die mittels dem nichtionischen Tensid Brij 97 (Synonym: Brij O10, Sigma Aldrich) stabilisiert wurde. Dabei handelt es sich um einen Polyoxyethylenether des Oleylalkohols, einem einfach ungesättigter C$18$-Alkohol, verknüpft mit zehn Ethylenoxidgruppen. Die Strukturformel ist in Abbildung \ref{pic:Brij} dargestellt. Das Tensid hat einen HLW-Wert von 12 und ist relativ gut wasserlöslich. Unter Rühren und leichter Temperaturerhöhung ließ sich problemlos eine zehnprozentige Tensidlösung herstellen. 
    88 
    99\begin{figure} 
     
    2222 
    2323\subsection{Wasser} 
    24 Für die Versuche wurde ausschließlich bidestilliertes Wasser mit einem Leitwert von $0,055 µ$S/cm verwendet. Obwohl frühere Versuche keine Empfindlichkeit gegen Ionen gezeigt hatten, sollte so der Einfluss von Fremdbestandteilen klein gehalten werden. 
     24Für die Versuche wurde ausschließlich bidestilliertes Wasser mit einem Leitwert von 0,055$µ$S/cm verwendet. Obwohl frühere Versuche keine Empfindlichkeit gegen Ionen gezeigt hatten, sollte so der Einfluss von Fremdbestandteilen klein gehalten werden. 
    2525 
    2626\subsection{Schwefelkohlenstoff} 
    27 Der untersuchte DNAPL, Schwefelkohlenstoff (CS$_2$), zeichnet sich vor allem durch seine geringe Löslichkeit in Wasser ($2$g/L), der hohe Dichte ($1,26$g/mL) und dem hohen Dampfdruck ($48,2$kPa) aus. Die geringe Löslichkeit und die hohe Dichte  sorgen dafür, dass  die  Mischbarkeit mit Wasser sehr begrenzt ist ($2$g/L bei $20°$C) und dass das CS$_2$ in Wasser als Schwerphase nach unten absinkt und sich am Gefäßboden zusammen lagert. Der hohe Dampfdruck bringt in Kombination mit der Explosivität der Substanz einige Besonderheiten im Umgang mit sich. Generell ist der Kontakt mit der Atmosphäre möglichst zu vermeiden. Daher wurden Vorräte in geöffneten Flaschen stets mit Wasser überschichtet, gasdichte Spritzen für den Transfer verwendet, die Proben stets dicht verschlossen und bis zur Analyse kühl gelagert. Um bei Unfällen die Explosionsgefahr gering zu halten wurde in einem spezielle eingerichteten Labor gearbeitet. Dieses war ausgestattet mit einer Zwangsbe- bzw. endlüftung. Wobei die Absaugung für den Raum sich aufgrund der hohen Dichte der Substanz auf Fußbodenhöhe befand. Der Boden war mit einer antistatischen Beschichtung versehen und sämtliche elektrische Geräte waren luftdicht gekapselt und geerdet. Aufgrund der Giftigkeit der Dämpfe wurde die Abluft aus den Digestorien und die Raumluft kontinuierlich mittels stationärem PID (Photoionisationsdetektor) und in zusätzlichen Stichproben mit einem mobilen PID überwacht.  CS$_2$ weist darüber hinaus einen ausgeprägten Eigengeruch auf, der auch in sehr  kleinen Mengen bereits von der menschlichen Nase wahrgenommen wird. Bei längerer Exposition kann es allerdings zu Gewöhnungseffekten kommen. 
     27Der untersuchte DNAPL, Schwefelkohlenstoff (CS$_2$), zeichnet sich vor allem durch seine geringe Löslichkeit in Wasser ($2$g/L), der hohe Dichte ($1,26$g/mL) und dem hohen Dampfdruck ($48,2$kPa) aus. Die geringe Löslichkeit und die hohe Dichte  sorgen dafür, dass  die  Mischbarkeit mit Wasser sehr begrenzt ist und dass das CS$_2$ in Wasser als Schwerphase nach unten absinkt und sich am Gefäßboden zusammen lagert. Der hohe Dampfdruck bringt in Kombination mit der Explosivität der Substanz einige Besonderheiten im Umgang mit sich. Generell ist der Kontakt mit der Atmosphäre möglichst zu vermeiden. Daher wurden Vorräte in geöffneten Flaschen stets mit Wasser überschichtet, gasdichte Spritzen für den Transfer verwendet, die Proben stets dicht verschlossen und bis zur Analyse kühl gelagert. Um bei Unfällen die Explosionsgefahr gering zu halten wurde in einem speziell eingerichteten Labor gearbeitet. Dieses war ausgestattet mit einer Zwangsbe- bzw. endlüftung. Wobei die Absaugung für den Raum sich aufgrund der hohen Dichte der Substanz auf Fußbodenhöhe befand. Der Boden war mit einer antistatischen Beschichtung versehen und sämtliche elektrische Geräte waren luftdicht gekapselt und geerdet. Aufgrund der Giftigkeit der Dämpfe wurde die Abluft aus den Digestorien und die Raumluft kontinuierlich mittels stationärem PID (Photoionisationsdetektor) und in zusätzlichen Stichproben mit einem mobilen PID überwacht.  CS$_2$ weist darüber hinaus einen ausgeprägten Eigengeruch auf, der auch in sehr  kleinen Mengen bereits von der menschlichen Nase wahrgenommen wird. Bei längerer Exposition kann es allerdings zu Gewöhnungseffekten kommen. 
    2828 
    2929Um die Schwerphase zu markieren und visuelle Beobachtungen zu ermöglichen wurde das CS$_2$ mit dem Tracerfarbstoff Oilred angefärbt. $50$g/L waren hier ausreichend. Höhere Konzentrationen können das gesamte Tensidsystem beeinflussen und zu veränderten Grenzflächenspannungen oder sogar zu Polymerisation führen.  
     
    3434 
    3535\subsection{Linker und Cotenside} 
    36 Als Linker kamen zum einen die Alkohole Isopropanol (Synonym: 2-Propanol), Hexanol und Decanol zum Einsatz, zum anderen ein Polyethylenglykol (PEG). %Der Isopropanol und das Polyethylenglycol sind deutlich hydrophil, Hexanol und Decanol lipophil. 
     36Als Linker kamen zum einen die Alkohole Isopropanol (Synonym: 2-Propanol), Hexanol und Decanol zum Einsatz, zum anderen ein Polyethylenglykol (PEG) mit einer durchschnittlichen molaren Masse von 1500 g/mol. %Der Isopropanol und das Polyethylenglycol sind deutlich hydrophil, Hexanol und Decanol lipophil. 
    3737%Welches PEG wurde hier verwendet? 
     38Dabei kann man eine Unterscheidung in hydrophile und lipophile Linker vornehmen. 
    3839Langkettige Alkohole (ab C6) sind verbreitete lipophile Linker, während PEGs gerne als hydrophile Linker eingesetzt werden. 
    39 Man kann also eine Unterscheidung in hydrophile und lipophile Linker vornehmen. Grundsätzlich lagern sich Linker zwischen den Tensidmolekülen an der ÖL-/Wassergrenzfläche an und verbessern entweder deren Wechselwirkungen mit dem Öl oder dem Wasser. 
     40 Grundsätzlich lagern sich Linker zwischen den Tensidmolekülen an der ÖL-/Wassergrenzfläche an und verbessern entweder deren Wechselwirkungen mit dem Öl oder dem Wasser. 
    4041 Hydrophile Linker setzten sich in der Grenzschicht zwischen die Kopfgruppen der Tensidmoleküle. Dort verringern sie die Wechselwirkungen der Kopfgruppen untereinander und vergrößern zudem die Oberfläche der Mizelle.  
    41 Lipophilen Linker bewegen sich zwischen die Alkylketten des Tensids in der Ölphase und vergrößern die Kontaktflächen zum Öl. \cite{Acosta.2003} 
     42Lipophile Linker bewegen sich zwischen die Alkylketten des Tensids in der Ölphase und vergrößern die Kontaktflächen zum Öl. \cite{Acosta.2003}. 
    4243 
    43 Als Cotenside wurden das anionische Lutensit A-BO, das nichtionische Lutensol ON 60 und das nichtionische Igepal CO-630 verwendet. 
    44 Lutensit A-BO (Abbildung \ref{pic:Lutensit}) ist ein Natrium-Dioctylsulfosuccinat, der HLB-Wert liegt bei $6-12$. Seine Struktur zeichnet sich durch die zwei Kohlenstoffketten aus. Zwischen diese kann die Ölphase gut penetrieren, was die Wechselwirkungen zwischen Öl und Tensid  verstärkt und helfen kann die Grenzflächenspannung weiter herab zu setzen. Lutensol ON60 (Abbildung \ref{pic:Lutensol}) ist ein Polyoxyethylenglycolether, sechsfach ethyliert, mit einem HLB-Wert von $12$. Seine Struktur ähnelt der von Brij 97, wobei der polare Molekülteil, also die hydrophile Kopfgruppe, kleiner ist. Das kann sich, genau wie verlängerte Kohlenstoffketten, positiv auf die Mizellgeometrie auswirken und die Oberflächenkrümmung verkleinern, da die Kopfgruppe im Verhältnis zur Kohlenstoffkette weniger Platz beansprucht. 
    45  Igepal CO-$630$ (Abbildung \ref{pic:Igepal}) ist  ein Polyoxyethylen-nonylphenylether und hat einen HLB-Wert von $13$. Igepal hat ebenfalls eine  ähnlichen Struktur wie Brij $97$. Es unterscheidet sich von diesem durch eine kürzeren Kohlenwasserstoffkette und einem stattdessen vorhandenen Benzolring. Dieser kann, ähnlich wie die zwei Ketten bei Lutensit eine Aufweitung der Abstände zwischen KW-Ketten bedingen.\\ 
     44Als Cotenside wurden das anionische \mbox{Lutensit A-BO}, das nichtionische \mbox{Lutensol ON 60} und das nichtionische \mbox{Igepal CO-630} verwendet. 
     45Lutensit A-BO (Abbildung \ref{pic:Lutensit}) ist ein Natrium-Dioctylsulfosuccinat, der HLB-Wert liegt bei $6-12$. Seine Struktur zeichnet sich durch die zwei Kohlenstoffketten aus. Zwischen diese kann die Ölphase gut penetrieren, was die Wechselwirkungen zwischen Öl und Tensid  verstärkt und helfen kann die Grenzflächenspannung weiter herab zu setzen. Lutensol ON 60 (Abbildung \ref{pic:Lutensol}) ist ein Polyoxyethylenglycolether, sechsfach ethyliert, mit einem HLB-Wert von $12$. Seine Struktur ähnelt der von Brij 97, wobei der polare Molekülteil, also die hydrophile Kopfgruppe, kleiner ist. Das kann sich, genau wie verlängerte Kohlenstoffketten, positiv auf die Mizellgeometrie auswirken und die Oberflächenkrümmung verkleinern, da die Kopfgruppe im Verhältnis zur Kohlenstoffkette weniger Platz beansprucht. 
     46 Igepal CO-$630$ (Abbildung \ref{pic:Igepal}) ist  ein Polyoxyethylen-nonylphenylether und hat einen HLB-Wert von $13$. Igepal hat ebenfalls eine  ähnlichen Struktur wie Brij $97$. Es unterscheidet sich von diesem durch eine kürzeren Kohlenwasserstoffkette und einem stattdessen vorhandenen Benzolring. Dieser kann, ähnlich wie die zwei Ketten bei Lutensit eine Aufweitung der Abstände zwischen KW-Ketten bedingen. 
    4647 
    4748\begin{figure} 
    48 \centering 
    49 \chemfig{Na^{+}\hspace{0,5cm}O^{-} -S(=[:90]O)(=[:270]O)-(-[:60](=[:90]O)-O-[:30]-[:330](-[:90]-[:30])-[:30]-[:330]-[:30]-[:330]) 
    50 (-[:300](=[:270]O)-O-[:330]-[:30](-[:270]-[:330])-[:330]-[:30]-[:330]-[:30])}      
     49\subfigure 
     50%\centering 
     51{\chemfig{Na^{+}\hspace{0,5cm}O^{-} -S(=[:90]O)(=[:270]O)-(-[:60](=[:90]O)-O-[:30]-[:330](-[:90]-[:30])-[:30]-[:330]-[:30]-[:330]) 
     52(-[:300](=[:270]O)-O-[:330]-[:30](-[:270]-[:330])-[:330]-[:30]-[:330]-[:30])}}      
    5153\caption{Strukturformel Lutensit A-BO} 
    5254\label{pic:Lutensit} 
    53 \end{figure} 
    5455 
     56\hspace{2cm} 
    5557 
    56  
    57 \begin{figure} 
    58 \centering 
    59 \chemfig{ RO \Bigg[ -[:30]-[:330]O \Bigg]_{6} H} 
     58\subfigure 
     59%\centering 
     60{\chemfig{ RO \Bigg[ -[:30]-[:330]O \Bigg]_{6} H} 
    6061 \hspace{1cm} 
    61  (R = kurzkettiger, gesättigter Fettalkohol ) 
     62 (R = kurzkettiger, gesättigter Fettalkohol )} 
    6263\caption{Strukturformel Lutensol ON 60} 
    6364\label{pic:Lutensol} 
    64 \end{figure} 
    6565 
     66\hspace{2cm} 
    6667 
    67  
    68 \begin{figure} 
    69 \centering 
    70 \chemfig{ C_{9}H_{19} -*6(-=-(\Bigg[ -[:30]O-[:330]-[:30]-[:330] \Bigg]_{10} OH)=-=)  } 
     68\subfigure 
     69%\centering 
     70{\chemfig{ C_{9}H_{19} -*6(-=-(\Bigg[ -[:30]O-[:330]-[:30]-[:330] \Bigg]_{10} OH)=-=)  }} 
    7171\caption{Strukturformel Igepal} 
    7272\label{pic:Igepal} 
     
    7676Aufgrund der für die HPLC-Messung zu hohen Konzentrationen der Proben mussten diese verdünnt werden. Die Verdünnung erfolgte in Methanol. Methanol und Wasser wurden  auch als Laufmittel für die HPLC eingesetzt. 
    7777 
    78 Um Spritzen, Kanülen und Gläser zwischendurch zu reinigen wurde Isopropanol verwendet. Dieser stört im Gegensatz zu Beispielsweise Aceton die HPLC-Messung nicht. Aceton wurde lediglich zum Entfernen von Rückständen von Decanol aus einer Spritze verwendet, bevor mehrfach mit Isopropanol nachgespült wurde. 
     78Um Spritzen, Kanülen und Gläser zwischendurch zu reinigen wurde Isopropanol verwendet. Dieser stört im Gegensatz zu Beispielsweise Aceton die HPLC-Messung nicht. %Aceton wurde lediglich zum Entfernen der Rückstände von Decanol aus einer Spritze verwendet, bevor mehrfach mit Isopropanol nachgespült wurde. 
    7979 
    8080 
     
    8282\section{Eruierung der Ergebnisse aus vorangegangenen Versuchen} 
    8383 
    84 Im Vorfeld dieser Arbeit wurden bereits Batchversuche durchgeführt. Mittels dieser wurde das Tensid Brij$97$ wegen seiner sehr guten Solubilisierungseigenschaften für den vorliegenden DNAPL und der geringen Querempfindlichkeit gegen Fremdionen aus fünfzehn getesteten anionischen und nichtionische Tensiden ausgewählt. Um die dort bestimmten Messergebnisse abzusichern und zu erweitern, wurden zwei weitere Batchreihen mit dem ausgewählten Tensid durchgeführt. Hier ging es nun zum einen darum, eine großen Konzentrationsspanne abzudecken (vgl. Kapitel \ref{subsec:grosse}). Zum anderen wurde der Konzentrationsbereich rund um die kritische Mizellkonzentration (CMC) genauer betrachtet(vgl. Kapitel \ref{subsec:kleine}). Bei beiden Messreihen wurde eine Dreifachbestimmung durchgeführt und die erhaltenen Messwerte mit denen aus den vorangegangenen  Versuchen verglichen. 
     84Im Vorfeld dieser Arbeit wurden bereits Batchversuche durchgeführt. Mittels dieser wurde das Tensid Brij $97$ wegen seiner sehr guten Solubilisierungseigenschaften für den vorliegenden DNAPL und der geringen Querempfindlichkeit gegen Fremdionen aus fünfzehn getesteten anionischen und nichtionische Tensiden ausgewählt. Um die dort bestimmten Messergebnisse abzusichern und zu erweitern, wurden zwei weitere Batchreihen mit dem ausgewählten Tensid durchgeführt. Hier ging es nun zum einen darum, eine großen Konzentrationsspanne zu untersuchen (vgl. Kapitel \ref{subsec:grosse}). Zum anderen wurde der Konzentrationsbereich rund um die kritische Mizellkonzentration (CMC) genauer betrachtet(vgl. Kapitel \ref{subsec:kleine}). Bei beiden Messreihen wurde eine Dreifachbestimmung durchgeführt und die erhaltenen Messwerte mit denen aus den vorangegangenen  Versuchen verglichen. 
    8585 
    8686\subsection{Vorgehen} 
     
    8989Um einen Druckausgleich während des Flüssigkeitstransfers zu ermöglichen wurde das Vial mit einer zweiten, feinen Nadel belüftet. Bei dieser war die Spitze zuvor mit einem Schleifstein abgerundet worden, um sowohl eine Beschädigung des Ventils, als auch das Verstopfen der Nadel zu verhindern.  
    9090 
    91 Aus Tensid und Wasser wurde zunächst eine Stammlösung hergestellt. Das Tensid wurde in eine Glasflasche eingewogen und mit Wasser aufgefüllt. Alle Massen wurden durch wiegen erfasst, so dass der tatsächliche Masseanteil an Tensid in der Lösung bestimmt werden konnte. Zudem wurde die Dichte der Tensidlösung bestimmt. Der DNAPL wurde in den Vials vorgelegt und über die Ventile die Tensidstammlösung und Wasser mittels Spritze zugegeben. Dazu war eine Umrechnung zwischen gewünschten Massenanteilen und der dafür benötigten Volumenzugabe der einzelnen Komponenten nötig. Hier wurde die Dichte der Tensidlösung, des Wassers und des DNAPLs benötigt.  
     91Aus Tensid und Wasser wurde zunächst eine Stammlösung hergestellt. Das Tensid wurde in eine Glasflasche eingewogen und mit Wasser aufgefüllt. Alle Massen wurden durch wiegen erfasst, so dass der tatsächliche Masseanteil an Tensid in der Lösung bestimmt werden konnte. Zudem wurde die Dichte der Tensidlösung bestimmt. Der DNAPL wurde in den Vials vorgelegt und über die Ventile die Tensidstammlösung und Wasser mittels Spritze zugegeben. Dazu war eine Umrechnung zwischen gewünschten Massenanteilen und den entsprechenden Volumenzugaben der einzelnen Komponenten erforderlich, weshalb die Dichte der Tensidlösung, des Wassers und des DNAPLs benötigt wurden.  
    9292 
    93 Die Mischungen wurden eine Woche lang in ein auf $20°$C Temperiertes Wasserbad gestellt. Nach $24$ und nach $48$ Stunden die Vials nochmals geschüttelt. Danach wurden sie bis zur Probenahme ruhen gelassen. 
     93Die Mischungen wurden eine Woche lang in ein auf $20°$C Temperiertes Wasserbad gestellt. Nach $24$ und nach $48$ Stunden wurden die Vials nochmals geschüttelt. Danach wurden sie bis zur Probenahme ruhen gelassen. 
    9494 
    95 Für die Analytik wurde aus der leichten Phase Probe entnommen und in zwei Schritten auf das Verhältnis 1/100  in Methanol verdünnt. Die Bestimmung der Konzentration an gelöstem CS$_2$ erfolgte mittels HPLC mit UV/VIS-Detektor bei einer Wellenlänge von 315nm. Als Laufmittel für die Analytik wurde Methanol verwendet.  
     95Für die Analytik wurde aus der leichten Phase Probe entnommen und in zwei Schritten auf das Verhältnis 1/100  in Methanol verdünnt. Die Bestimmung der Konzentration an gelöstem CS$_2$ erfolgte mittels HPLC mit UV/VIS-Detektor bei einer Wellenlänge von 315nm. 
    9696 
    97 Die Dichte der Proben wurde bestimmt durch wiegen eines definierten Probenvolumens. Hierzu wurde mit einer gasdichten  
    98 Glasspritze ein Volumen von $2,5$ ml Probe abgenommen und auf einer Analysenwaage die  
    99 Masse mit einer Genauigkeit von $0,1$ mg bestimmt. 
     97Die Dichte der Proben wurde bestimmt durch wiegen eines definierten Probevolumens. Hierzu wurde mit einer gasdichten  
     98Glasspritze ein Volumen von $2,5$ml Probe abgenommen und auf einer Analysenwaage die  
     99Masse mit einer Genauigkeit von $0,1$mg bestimmt. 
    100100 
    101101 
    102 Die Oberflächenspannung der Proben wurde mit einem Blasendrucktensiometer (BPA-1P, Sinterface) gemessen.  
     102Die Oberflächenspannung der Proben wurde mit einem Blasendrucktensiometer (\mbox{BPA-1P}, Sinterface) gemessen.  
    103103Die Messung erfolgte im "fast scan mode" des Gerätes. Dadurch dauert die Messung einer Probe nur fünf bis zehn  Minuten. 
    104104 
    105 Mit einem Mikro-Ubbelohdeviskosimeter wurde die kinematische Viskosität bestimmt. Dabei wurden für die Batchreihe bei der, aufgrund der hohen Tensidkonzentrationen, mit einer hohen Viskosität zu rechnen war ein Viskosimeter mit einer Kapillare von $20 µm$ Durchmesser  verwendet. Für die Reihe mit niedrigen Tensidkonzentrationen wurde ein Viskosimeter  
    106 mit einem Kapillardurchmesser von $10 µm$  genutzt, wodurch die Fließzeiten verlängert und somit die  
     105Mit einem Mikro-Ubbelohdeviskosimeter wurde die kinematische Viskosität bestimmt. Dabei wurden für die Batchreihe bei der, aufgrund der hohen Tensidkonzentrationen, mit einer hohen Viskosität zu rechnen war ein Viskosimeter mit einer Kapillare von 20$µ$m Durchmesser  verwendet. Für die Reihe mit niedrigen Tensidkonzentrationen wurde ein Viskosimeter  
     106mit einem Kapillardurchmesser von 10$µ$m  genutzt, wodurch die Fließzeiten verlängert und somit die  
    107107Genauigkeit erhöht wurde. Beide Viskosimeter waren vorab mit  destilliertem Wasser  kalibriert worden. Über die  
    108 Multiplikation der kinematischen Viskosität mit der Dichte wurde die dynamische Viskosität berechnet. Das Messverfahren ist streng genommen nur für newtonische Fluide geeignet, zu denen Tenside im allgemeinen nicht  gezählt werden. Aufgrund der geringen Tensidkonzentrationen, wurde diese Eigenschaft dennoch für die Proben angenommen. 
     108Multiplikation der so erhaltenen kinematischen Viskosität mit der Dichte konnte die dynamische Viskosität berechnet werden. Das Messverfahren ist streng genommen nur für newtonische Fluide geeignet, zu denen Tenside im allgemeinen nicht  gezählt werden. Aufgrund der geringen Tensidkonzentrationen, wurde diese Eigenschaft dennoch für die Proben angenommen. 
    109109 
    110110 
     
    118118\subsection{Große Konzentrationsreihe}\label{subsec:grosse} 
    119119 
    120 Der Versuch sollte zeigen, wie sich eine Erhöhung der Tensidkonzentration auf das Gesamtsystem auswirkt. Es sollte eine Aussage über die Tensidkonzentration mit der besten Solubilisierungsrate  ($S=Masse_{ gel"oster DNAPL} / Masse_{eingesetztes Tensid}$) gemacht werden, sowie der Anstieg der Viskosität kritisch betrachtet werden. 
     120Der Versuch sollte zeigen, wie sich eine Erhöhung der Tensidkonzentration auf das Gesamtsystem auswirkt. Es sollte eine Aussage über die Tensidkonzentration mit der besten Solubilisierungsrate  ($S=Masse ( gel"oster DNAPL) / Masse (eingesetztes Tensid)$) gemacht werden, sowie der Anstieg der Viskosität kritisch betrachtet werden. 
    121121Hierzu wurden Probenansätze mit 50 \% DNAPL, 0,5 \% Calciumchlorid und eine variable Masse Tensid, von 0 \% bis 9 \%, sowie Wasser hergestellt.  
    122122 
     
    138138Von der Tensidlösung wurden ein Teil in eine 100ml-Flasche überführt. Diese wurde verschlossen mit einer Schraubkappe aus PP mit PTFE-Inlay und Luer-Anschlüssen. Zur Tensidlösung wurde nun die gleiche Masse an CS$_2$ gegeben und das ganze gut geschüttelt, so dass eine gleichmäßig Emulsion entstand. 
    139139 
    140 Die Emulsion wurde auf acht 15ml-Vials verteilt, wobei die Zugabe mit gasdichten Spritzen über Mininert-Ventile erfolgte. Der erste Ansatz, l0, blieb als als Referenz ohne Zusatz. In die weiteren Vials wurde je ein Linker oder ein Cotensid zugegeben. Die Zugabe erfolgte durch langsames Zutropfen mittels einer 1ml- Spritze, welches durch mehrmaliges Verschütteln unterbrochen wurde. Da das PEG als Feststoff vorlag wurde es zunächst in Wasser gelöst und als neunprozentige Lösung zugegeben. 
     140Die Emulsion wurde auf acht 15ml-Vials verteilt, wobei die Zugabe mit gasdichten Spritzen über Mininert-Ventile erfolgte. Der erste Ansatz, l0, blieb als als Referenz ohne Zusatz. In die weiteren Vials wurde je ein Linker oder ein Cotensid zugegeben. Die Zugabe erfolgte durch langsames Zutropfen mittels einer 1ml-Spritze, welches durch mehrmaliges Verschütteln unterbrochen wurde. Da das PEG als Feststoff vorlag wurde es zunächst in Wasser gelöst und als neunprozentige Lösung zugegeben. 
    141141 
    142142Die fertigen Ansätze wurden über Nacht in ein auf 20°C temperiertes Wasserbad gestellt um die Einstellung eines Gleichgewichtszustandes zu ermöglichen.