Changeset 211 for diplomarbeit/Kapitel_2.tex
- Timestamp:
- 07/12/12 08:08:36 (12 years ago)
- Files:
-
- diplomarbeit/Kapitel_2.tex (modified) (1 diff)
Legend:
- Unmodified
- Added
- Removed
- Modified
- Copied
- Moved
diplomarbeit/Kapitel_2.tex
r209 r211 133 133 \subsection{Messergebnisse} 134 134 135 Da sich mit keiner der Mischungen spontan Mikroemulsion bildete und keine größereOptimierung der bisherigen Mischung ersichtlich war, wurde zunächst auf eine Beprobung und Messung der Ansätze verzichtet und die Proben im Kühlraum aufbewahrt für mögliche spätere Vergleiche.135 Da sich mit keiner der Mischungen spontan Mikroemulsion bildete und keine Optimierung der bisherigen Mischung ersichtlich war, wurde zunächst auf eine Beprobung und Messung der Ansätze verzichtet und die Proben im Kühlraum aufbewahrt für mögliche spätere Vergleiche. 136 136 137 137 138 138 \subsection{Zusammenfassung und Bewertung} 139 139 140 Das Vorrangige Ziel, durch die Zugabe eines Linkers oder Cotensids ein Mikroemulsionssystem zu erzeugen, wurde unter den gegebenen Bedingungen mit keinem der Additive erreicht. Dies kann zum einen an generell ungeeigneten Additiven liegen, aber auch an de r Herstellungsmethodik oderRandbedingungen, wie Temperatur und Salinität. \\140 Das Vorrangige Ziel, durch die Zugabe eines Linkers oder Cotensids ein Mikroemulsionssystem zu erzeugen, wurde unter den gegebenen Bedingungen mit keinem der Additive erreicht. Dies kann zum einen an generell ungeeigneten Additiven liegen, aber auch an den experimentellen Bedingungen wie Reihenfolge der Zugabe, Zugabegeschwindigkeit und Equilibrationszeit oder an Randbedingungen, wie Temperatur und Salinität. \\ 141 141 Das es Grundsätzlich möglich ist, eine mit Brij 97 stabilisierte Makroemulsion mit einem Linker zu brechen zeigen die Versuche von Zhou \cite{Zhou.2000}. Mit einer Mischung aus drei Prozent Brij 97 und drei Prozent IPA erzielte Zhou gute Erfolge bei der Sanierung von PCE. Hier wurde IPA erfolgreich eingesetzt um die Makroemulsion zu brechen und so Mikroemulsion zu erhalten. Zhou zeigt in seinen Versuchen aber auch, das das Brechen der Emulsion mit IPA bei Systemen mit anderen Tensiden nicht funktioniert. Der Linker muss auf das Gesamtsystem (DNAPL, Tensid, Wasser, Linker) abgestimmt sein. 142 142 Gleiches gilt auch für die Cotenside. Erwünscht ist ein vermehrtes Eindringen des Cotensides in die Schwerphase. Dies lässt sich auf verschiedenen Wegen erreichen. Ein anionisches Tensid reagiert potentiell sensitiv auf die Erhöhung der Ionenkonzentration. Bei steigender Salinität, wird der HLB-Wert kleiner \cite{Sabatini.2000}. Das heißt die Öllöslichkeit steigt. Daher wäre die Erhöhung der Salzkonzentration in der Lösung eine Möglichkeit das Eindringen des anionischen Cotensides in die Schwerphase zu erhöhen. Einziges in den beschriebenen Versuchen eingesetztes anionisches Cotensid war Lutensit A-BO. Hier erscheint der zusätzliche Einsatz von Salz allerdings nicht sinnvoll, da das Cotensid eine bereits schlechte Löslichkeit in der wässrigen Tensidlösung zeigte (vgl. Kap. \ref{Reihe 2}) und sich die Löslichkeit für CS$_2$ verschlechterte (vgl. Kap. \ref{Aussehen}). Hier liegt die Vermutung nahe, dass Lutensit A-BO bereits eher lipophil ist, aber bevorzugt an Stelle von CS$_2$ solubilisiert wird.\\ 143 143 Wie sich die Temperatur bei der Emulsifikation auf die Tröpfchengröße auswirkt zeigt Shinoda \cite{Shinoda.1969} mit seinen Untersuchungen an einer zu Brij 97 verwandten Gruppe von Tensiden. Es wird außerdem der Zusammenhang zwischen Phaseninversionstemperatur und Größe der hydrophilen Gruppe des Tensids dargestellt. Demnach gilt: Die PIT variiert mit der Schwerphase und der Länge des hydrophilen Teils des Tensids. 144 144 Allgemein lässt sich sagen, dass die Wechselwirkungen zwischen hydrophilem Tensidteil und Wasser bei abnehmender Temperatur steigen. Eine Vergrößerung der hydrophilen Gruppe führt ebenfalls zu steigenden Wechselwirkungen mit Wasser. Daher ist mit größer werdem hydrophilen Anteil eine höhere Temperatur nötig um die Tröpfchen zu verkleinern. 145 Will man also bei niedriger Temperatur arbeiten, sollte man ein Tensid mit kleiner Kopfgruppe verwenden. Die Emulsifikation nach der PIT-Methode wird in einem Temperaturbereich knapp unterhalb der PIT durchgeführt und die Emulsion dann rasch auf Lagerungstemperatur abgekühlt um stabile Emulsionen mit geringen Tröpfchengrößen zu erhalten .\cite{Shinoda.1969}. Die PIT-Methode kann für das vorliegende System allerdings nur eingeschränkt zum einsatz kommen, da aufgrund des hohen Dampfdrucks des Schwefelkohlenstoffs nur eine moderate Temperaturerhöheung möglich ist.145 Will man also bei niedriger Temperatur arbeiten, sollte man ein Tensid mit kleiner Kopfgruppe verwenden. Die Emulsifikation nach der PIT-Methode wird in einem Temperaturbereich knapp unterhalb der PIT durchgeführt und die Emulsion dann rasch auf Lagerungstemperatur abgekühlt um stabile Emulsionen mit geringen Tröpfchengrößen zu erhalten .\cite{Shinoda.1969}. Die PIT-Methode kann für das vorliegende System allerdings nur eingeschränkt zum Einsatz kommen, da aufgrund des hohen Dampfdrucks des Schwefelkohlenstoffs nur eine moderate Temperaturerhöheung möglich ist.