Changeset 219 for diplomarbeit/Batch.tex
- Timestamp:
- 09/10/12 20:58:55 (12 years ago)
- Files:
-
- diplomarbeit/Batch.tex (modified) (2 diffs)
Legend:
- Unmodified
- Added
- Removed
- Modified
- Copied
- Moved
diplomarbeit/Batch.tex
r212 r219 6 6 \section{Eruierung der Ergebnisse aus vorangegangenen Versuchen} 7 7 8 Im Vorfeld dieser Arbeit wurden bereits Batchversuche durchgeführt. Mittels dieser wurde das Tensid Brij 97 wegen seiner sehr guten Solubilisierungseigenschaften für den vorliegenden DNAPL und der geringen Querempfindlichkeit gegen Fremdionen aus fünfzehn getesteten anionischen und nichtionische Tensiden ausgewählt. Um die dort bestimmten Messergebnisse abzusichern und zu erweitern, wurden zwei weitere Batchreihen mit dem ausgewählten Tensid durchgeführt. Hier ging es nun zum einen darum, eine großen Konzentrationsspanne zu untersuchen (vgl. Kapitel \ref{subsec:grosse}). Zum anderen wurde der Konzentrationsbereich rund um diekritische Mizellkonzentration (CMC) genauer betrachtet(vgl. Kapitel \ref{subsec:kleine}). Bei beiden Messreihen wurde eine Dreifachbestimmung durchgeführt und die erhaltenen Messwerte mit denen aus den vorangegangenen Versuchen verglichen.8 Im Vorfeld dieser Arbeit wurden bereits Batchversuche durchgeführt. Mittels dieser wurde das Tensid Brij 97 wegen seiner sehr guten Solubilisierungseigenschaften für den vorliegenden DNAPL und der geringen Querempfindlichkeit gegen Fremdionen aus fünfzehn getesteten anionischen und nichtionische Tensiden ausgewählt. Um die dort bestimmten Messergebnisse abzusichern und zu erweitern, wurden zwei weitere Versuchsreihen mit dem ausgewählten Tensid durchgeführt. Hier ging es nun zum einen darum, eine großen Konzentrationsspanne zu untersuchen (vgl. Kapitel \ref{subsec:grosse}). Zum anderen wurde der Konzentrationsbereich nahe der kritische Mizellkonzentration (CMC) genauer betrachtet(vgl. Kapitel \ref{subsec:kleine}). Bei beiden Messreihen wurde eine Dreifachbestimmung durchgeführt und die erhaltenen Messwerte mit denen aus den vorangegangenen Versuchen verglichen. 9 9 10 10 \subsection{Vorgehen} 11 11 12 Die Chemikalien wurden in 15 ml-Vials mit Septum und Mininert-Ventilen gemischt. Diese Ventile wurden nur geöffnet um Flüssigkeit zuzugeben bzw. zu entnehmen. Die Zugabe des DNAPLs, sowie die Probenahme,erfolgte mit einer gasdichten Spritze.12 Die Chemikalien wurden in 15 ml-Vials mit Septum und Mininert-Ventilen gemischt. Diese Ventile wurden nur geöffnet, um Flüssigkeit zuzugeben bzw. zu entnehmen. Die Zugabe des DNAPLs sowie die Probenahme erfolgte mit einer gasdichten Spritze. 13 13 Um einen Druckausgleich während des Flüssigkeitstransfers zu ermöglichen wurde das Vial mit einer zweiten, feinen Nadel belüftet. Bei dieser war die Spitze zuvor mit einem Schleifstein abgerundet worden, um sowohl eine Beschädigung des Ventils, als auch das Verstopfen der Nadel zu verhindern. 14 14 15 Aus Tensid und Wasser wurde zunächst eine Stammlösung hergestellt. Das Tensid wurde in eine Glasflasche eingewogen und mit Wasser aufgefüllt. Alle Massen wurden durch wiegen erfasst, so dass der tatsächliche Masseanteil an Tensid in der Lösung bestimmt werden konnte. Zudem wurde die Dichte der Tensidlösung bestimmt. Der DNAPL wurde in den Vials vorgelegt und über die Ventile die Tensidstammlösung und Wasser mittels Spritze zugegeben. Dazu war eine Umrechnung zwischen gewünschten Massenanteilen und den entsprechenden Volumenzugaben der einzelnen Komponenten erforderlich, weshalb die Dichte der Tensidlösung, des Wassers und des DNAPLs benötigt wurden.15 Aus Tensid und Wasser wurde zunächst eine Stammlösung hergestellt. Das Tensid wurde in eine Glasflasche eingewogen und mit Wasser aufgefüllt. Alle Massen wurden durch Wägung erfasst, so dass der tatsächliche Masseanteil an Tensid in der Lösung bestimmt werden konnte. Zudem wurde die Dichte der Tensidlösung bestimmt. Der DNAPL wurde in den Vials vorgelegt und über die Ventile die Tensidstammlösung und Wasser mittels Spritze über die Ventile zugegeben. Dazu war eine Umrechnung zwischen gewünschten Massenanteilen und den entsprechenden Volumenzugaben der einzelnen Komponenten erforderlich, weshalb die Dichte der Tensidlösung, des Wassers und des DNAPLs benötigt wurden. 16 16 17 17 Die Mischungen wurden eine Woche lang in ein auf 20°C Temperiertes Wasserbad gestellt. Nach 24 und nach 48 Stunden wurden die Vials nochmals geschüttelt. Danach wurden sie bis zur Probenahme ruhen gelassen. 18 18 19 Für die Analytik wurde aus der leichten Phase Probe entnommen und in zwei Schritten auf das Verhältnis 1/100 in Methanol verdünnt. Die Bestimmung der Konzentration an gelöstem CS$_2$ erfolgte mittels HPLC mit UV/VIS-Detektor bei einer Wellenlänge von 315 nm.19 Für die Analytik wurde aus der leichten Phase Probe entnommen und in zwei Schritten auf das Verhältnis 1/100 in Methanol verdünnt. Die Verdünnung in zwei Schritten war nötig, um eine repräsentative Probenahme zu gewährleisten. Die Bestimmung der Konzentration an gelöstem CS$_2$ erfolgte mittels HPLC mit UV/VIS-Detektor bei einer Wellenlänge von 315 nm. 20 20 21 21 Die Dichte der Proben wurde bestimmt durch wiegen eines definierten Probevolumens. Hierzu wurde mit einer gasdichten … … 25 25 26 26 Die Oberflächenspannung der Proben wurde mit einem Blasendrucktensiometer (\mbox{BPA-1P}, Sinterface) gemessen. 27 Die Messung erfolgte im "fast scan mode" des Gerätes. Dadurch dauert die Messung einer Probe nur fünf bis zehn 27 Die Messung erfolgte im "fast scan mode" des Gerätes. Dadurch dauert die Messung einer Probe nur fünf bis zehn Minuten. 28 28 29 Mit einem Mikro-Ubbelohde viskosimeter wurde die kinematische Viskosität bestimmt. Dabei wurden für die Batchreihe bei der, aufgrund der hohen Tensidkonzentrationen, mit einer hohen Viskosität zu rechnen war ein Viskosimeter mit einer Kapillare von 20$µ$m Durchmesser verwendet. Für die Reihe mit niedrigen Tensidkonzentrationen wurde ein Viskosimeter29 Mit einem Mikro-Ubbelohde-Viskosimeter wurde die kinematische Viskosität bestimmt. Dabei wurden für die Batchreihe bei der, aufgrund der hohen Tensidkonzentrationen mit einer hohen Viskosität zu rechnen war, ein Viskosimeter mit einer Kapillare von 20 $µ$m Durchmesser verwendet. Für die Reihe mit niedrigen Tensidkonzentrationen wurde ein Viskosimeter 30 30 mit einem Kapillardurchmesser von 10 $µ$m genutzt, wodurch die Fließzeiten verlängert und somit die 31 31 Genauigkeit erhöht wurde. Beide Viskosimeter waren vorab mit destilliertem Wasser kalibriert worden. Über die 32 Multiplikation der so erhaltenen kinematischen Viskosität mit der Dichte konnte die dynamische Viskosität berechnet werden. Das Messverfahren ist streng genommen nur für newtonische Fluide geeignet, zu denen Tenside im allgemeinen nicht gezählt werden. Aufgrund der geringen Tensidkonzentrationen,wurde diese Eigenschaft dennoch für die Proben angenommen.32 Multiplikation der so erhaltenen kinematischen Viskosität mit der Dichte konnte die dynamische Viskosität berechnet werden. Das Messverfahren ist streng genommen nur für newtonische Fluide geeignet, zu denen Tenside im Allgemeinen nicht gezählt werden. Aufgrund der geringen Tensidkonzentrationen wurde diese Eigenschaft dennoch für die Proben angenommen. 33 33 34 34