24 | | Abhängig von der Homogennität der Sandpackung konnte während des Aufsättigens der Säulen mit CS$_2$ das Anlegen von Schichten ("layering", vgl. Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes Rieseln des Sandes, beispielsweise, wenn dieser feucht ist, das Fallrohr nicht gleichmäßig schwingt oder die Säule schief eingebaut ist. Durch das Layering ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.\bigskip |
---|
25 | | |
---|
26 | | Vor allem im Mittelsand war eine andere Unregelmäßigkeit zu beobachten: der Einschluss von Luft (vgl. Abbildung \ref{pic:säulenprobs}). Die Lufteinschlüsse werden durch die veränderte Lichtbrechung am Säulenrand sichtbar. Luft in der Säule ist unerwünscht, da sie Poren blockiert. Dies führt dazu, dass sich feste Flusspfade ausbilden und daher nicht mehr alle Bereiche der Säule in gleichem Maße durchströmt werden. Es gibt mehrere Möglichkeiten, wie Luft in die Säule gelangen kann. Zum einen kann sie sich vor dem Wassersättigen bereits in der Säule befinden. Dies passiert dann, wenn das vorangegangene CO$_2$-Fluten nicht ausreichte oder die Säule vor dem Wassersättigen längere Zeit mit undichten Verschlüssen stand. Luft kann aber auch mit dem Fluid eingetragen werden. Dies tritt zum Beispiel durch nicht ausreichend endgastes Wasser oder Eingasen in Leitungen und Verbindungen durch den Unterdruck der Strömung sowie den Partialdruck der Luft auf. Werden Luftblasen erst nach dem Aufsättigen mit CS$_2$ festgestellt, ist es auch möglich, dass dieses aus der Lösung ausgegast ist. Aufgrund der hohen Flüchtigkeit der Substanz kann dies vor allem bei höheren Temperaturen vorkommen. |
---|
27 | | |
---|
28 | | Finger, wie in Abbildung \ref{fingering_mob} in der zweiten Säule von links (Nr. 32) zu sehen, treten auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte. Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch das instabil werden der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt wurden. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund 80\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. |
---|
29 | | Bei anderen Versuchen, mit deutlich geringer Tracerkonzentration, konnten keine derartig ausgeprägten Finger im Feinsand beobachtet werden. Im Mittelsand wurden bei einzelnen Säulen vergleichbare Beobachtungen gemacht, wobei die Unregelmäßigkeit immer im Zusammenhang mit Mobilisation auftrat. Da die Beobachtung stets nur bei einer von zwei parallel betriebenen Säulen gemacht wurde, wird dies nicht durch Fließrate oder Tensidkonzentration verursacht. Wahrscheinlicher ist, dass eine unregelmäßige Packung und Lufteinschlüsse in der Säule ursächlich waren. |
---|
| 24 | |
---|
| 25 | Abhängig von der Homogennität der Sandpackung konnte während des Aufsättigens der Säulen mit CS$_2$ die Ausbildung von Schichten ("layering", vgl. Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes Rieseln des Sandes, beispielsweise, wenn |
---|
| 26 | dieser feucht ist, |
---|
| 27 | das Fallrohr nicht gleichmäßig schwingt oder die Säule schief eingebaut ist. Durch die Schichtung ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.%\bigskip |
---|
| 28 | |
---|
| 29 | Vor allem im Mittelsand war noch eine weitere Form von Unregelmäßigkeit zu beobachten: der Einschluss von Luft (vgl. Abbildung \ref{pic:säulenprobs}). Die Lufteinschlüsse werden durch die veränderte Lichtbrechung am Säulenrand sichtbar. Luft in der Säule ist unerwünscht, da sie Poren blockiert. Dies führt dazu, dass sich feste Fließpfade ausbilden und daher nicht mehr alle Bereiche der Säule in gleichem Maße durchströmt werden. Es gibt mehrere Möglichkeiten, wie Luft in die Säule gelangen kann. Zum einen kann sie sich vor dem Wassersättigen bereits in der Säule befinden. Dies passiert dann, wenn das vorangegangene CO$_2$-Fluten nicht ausreichte oder die Säule vor dem Wassersättigen längere Zeit mit undichten Verschlüssen stand. Luft kann aber auch mit dem Fluid eingetragen werden. Dies tritt zum Beispiel durch nicht ausreichend entgastes Wasser oder Eingasen in Leitungen und Verbindungen durch den Unterdruck der Strömung sowie den Partialdruck der Luft auf. Werden Luftblasen erst nach dem Aufsättigen mit CS$_2$ festgestellt, ist es auch möglich, dass dieses aus der Lösung ausgegast ist. Aufgrund der hohen Flüchtigkeit der Substanz kann dies vor allem bei höheren Temperaturen vorkommen. |
---|
| 30 | |
---|
| 31 | Finger treten dann auf, wenn die treibende Kraft der Strömung größer wird als die Kapillarkräfte (siehe Abbildung \ref{fingering_mob} in der zweiten Säule von links (Nr. 32)). Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch die Destabilisierung der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt worden waren. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund 80\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. |
---|
| 32 | Bei anderen Versuchen mit deutlich geringer Tracerkonzentration konnten keine derartig ausgeprägten Finger im Feinsand beobachtet werden. Im Mittelsand wurden bei einzelnen Säulen vergleichbare Beobachtungen gemacht, wobei die Unregelmäßigkeit immer im Zusammenhang mit Mobilisierung auftrat. Da die Beobachtung stets nur bei einer von zwei parallel betriebenen Säulen gemacht wurde, wird dies nicht durch die Fließrate oder Tensidkonzentration verursacht. Wahrscheinlicher ist, dass eine unregelmäßige Packung und Lufteinschlüsse in der Säule dafür verantwortlich waren. |
---|
41 | | Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und NAPL so klein wird, dass sich die beiden Phasen unabhängig ineinander bewegen können. Je nach dem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase mit der Strömung, oder aber er sinkt nach unten ab. % Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. |
---|
| 44 | Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrigen Phase bewegen kann.%die beiden Phasen unabhängig ineinander bewegen können. Je nachdem, ob die Aufwärtsströmung oder die Erdbeschleunigung als treibende Kraft dominiert, bewegt sich der DNAPL als zusammenhängende Phase mit der Strömung, oder aber er sinkt nach unten ab. % Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. |
---|
61 | | Abbildung \ref{pic:säulenzustände} zeigt denselben Versuch zu unterschiedlichen Zeitpunkten: Die vollständig CS$_2$-gesättigten Säulen, residuale Sättigung nach dem Nachspülen mit Wasser und kurz nach dem Start der Tensidspülung. Während im ersten Bild eine Schichtung (layering) im Feinsand erkennbar ist, so ist dies nach dem Spülen nicht mehr der Fall, trotzdem ist diese aber natürlich vorhanden. Gut zu sehen an allen vier Säulen, vor allem aber im Feinsand (links) ist auch, dass die Säulen nicht bis ganz oben gleichmäßig gesättigt sind. Dies liegt begründet darin, dass die Randbereiche nicht mehr aufgefüllt werden, sobald der DNAPL beim Aufsättigen durchgebrochen ist, da die nachfolgende Phase dem vorhandenen Fließpfad folgt.\\ |
---|
| 65 | Abbildung \ref{pic:säulenzustände} zeigt denselben Versuch zu unterschiedlichen Zeitpunkten: Die vollständig CS$_2$-gesättigten Säulen (a), residuale Sättigung nach dem Nachspülen mit Wasser (b) und kurz nach dem Start der Tensidspülung (c). |
---|
| 66 | Während im ersten Bild eine Schichtung (layering) im Feinsand erkennbar ist, so ist dies nach dem Spülen nicht mehr der Fall, trotzdem ist diese aber natürlich vorhanden. Gut zu sehen an allen vier Säulen, vor allem aber im Feinsand (links) ist auch, dass die Säulen nicht bis ganz oben gleichmäßig gesättigt sind. Dies liegt begründet darin, dass die Randbereiche nicht mehr aufgefüllt werden, sobald der DNAPL beim Aufsättigen durchgebrochen ist, da die nachfolgende Phase dem vorhandenen Fließpfad folgt.\\ |
---|
138 | | Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_2$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Wiederfindung von 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz, bezogen auf die Inititialsättigung, lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung. |
---|
| 145 | Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_2$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Wiederfindung von 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz bezogen auf die Inititialsättigung lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung. |
---|
148 | | Da die erste Probe bei allen Versuchen bereits nach 0,7 Porenvolumen genommen worden war, sollte der erste Messwert in etwa der Oberflächenspannung von Wasser entsprechen. Das war jedoch nicht bei allen Proben der Fall. Da das Tensid bei auftreffen auf den DNAPL zu quellen began, war teils schon in den ersten Proben Tensid enthalten und damit die Oberflächenspannnung leicht reduziert. Nach einem Porenvolumen war die Oberflächenspannung auf das Minimum von 35mN/m abgesunken und blieb dort stabil. Nach dem Nachspülen von einem Porenvolumen Wasser stieg die Oberflächenspannung wieder auf das Ausgangsniveau an. Am Verlauf der Oberflächenspannung lässt sich dehr deutlich das frühe Umschalten auf Wasser bei den Säulen 29 und 30 erkennen. Bei Säule 30 steigt die Oberflächenspannung nach dem Umschalten rasch an. Bei Säule 29 gibt es einen langsamen ungleichmäßigen Anstieg, was für eine langsame Verdünnung des Tensids spricht. |
---|
149 | | |
---|
| 155 | Da die erste Probe bei allen Versuchen bereits nach 0,7 Porenvolumen genommen worden war, sollte der erste Messwert in etwa der Oberflächenspannung von Wasser entsprechen. Das war jedoch nicht bei allen Proben der Fall. %Da die Phase bei auftreffen des Tensids auf den DNAPL zu quellen began, |
---|
| 156 | Teilweiße war schon in den ersten Proben Tensid enthalten und damit die Oberflächenspannnung leicht reduziert. |
---|
| 157 | Nach einem Porenvolumen war die Oberflächenspannung auf das Minimum von 35mN/m abgesunken und blieb dort stabil. Nach dem Nachspülen von einem Porenvolumen Wasser stieg die Oberflächenspannung wieder auf das Ausgangsniveau an. Am Verlauf der Oberflächenspannung lässt sich sehr deutlich das frühe Umschalten auf Wasser bei den Säulen im ersten Versuch erkennen (Feinsand und Mittelsand, 1 ml/min). |
---|
| 158 | Im Mittelsand steigt die Oberflächenspannung nach dem Umschalten rasch an. Im Feinsand gibt es einen langsamen ungleichmäßigen Anstieg, was für eine langsame Verdünnung des Tensids spricht. |
---|
153 | | Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen. \citep{Lee.2001}, \citep{LUBW.2001}) und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen und zu nicht durchströmten ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. |
---|
| 162 | Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen. \citep{Lee.2001, LUBW.2001}) |
---|
| 163 | und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen sowie zu nicht durchströmten, ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. |
---|