Show
Ignore:
Timestamp:
10/23/12 23:38:40 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Kapitel_2.tex

    r221 r228  
    77\subsection{Aussehen und Stabilität} 
    88 
    9 Die leichte Phase war eine milchig weiße Lösung, wie auch in früheren Versuchen. Ab einer Konzentration von 0,5\% Tensid bildete sich zudem eine milchige rosa gefärbte Mittelphase. Bei fast allen Proben konnte aber ein kleiner Rest Schwerphase nicht solubilisiert werden. 
     9Wie auch in früheren Versuchen, wurden in allen Ansätzen mehrere Phasen ausgebildet. Die leichte Phase war eine milchig weiße Lösung, wie auch in früheren Versuchen. Ab einer Konzentration von 0,5\% Tensid bildete sich zudem eine milchige rosa gefärbte Mittelphase. Bei fast allen Proben konnte aber ein kleiner Rest Schwerphase nicht solubilisiert werden. 
    1010 
    1111Die Vermischung setzte selbst bei sehr niedrigen Konzentrationen unmittelbar nach zusammengeben der Phasen ein und es war nach einmaligem Verschütteln bereits nach 2-3 Stunden keine optische Veränderung der Zusamensetzung mehr erkennbar.  
     
    2626\end{figure} 
    2727 
    28 Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen 15 g/l und 50 g/l. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm.  
    29 Dieses wird berechnet, indem  die Masse an gelöster Schwerphase auf die Masse an Tensid bezogen wird: $S=m_{CDS}/m_{Surfactant}$. Im betrachteten Konzentrationsbereich fällt das Solubilisierungspotential  bei Zugabe von Tensid zunächst deutlich und bei weiterer Tensidzugaben geringer ab. Der Verlauf lässt sich mit der Mizellbildung erklären. So lagern sich zunächst Tensidmoleküle an die Grenzfläche an, senken die Grenzflächenspannung und verbessern die Solubilisierung sehr rasch. Dieser Effekt wird bereits durch kleinste Mengen eines Emulgators erreicht. Bei erreichen der CMC ändert sich die Grenzflächenspannung nicht mehr und eine weitere Solubilisierung wird nur noch durch die Einlagerung in Mizellen erreicht. Da in einer Mizelle die DNAPL-Moleküle nicht nur angelagert, sondern komplett von Tensidmolekülen umschlossen werden, sind hier mehr Tensidmoleküle notwendig. Der Verbrauch an Tensid steigt im Verhältnis zur gelösten Schwerphase. 
     28Die gemessenen Konzentration von gelöstem DNAPL in der leichten Phase lagen zwischen \mbox{15 g/l} und \mbox{50 g/l}. Wobei das Solubilisierungspotential mit steigender Tensidkonzentration leicht abnahm.  
     29%Dieses wird berechnet, indem  die Masse an gelöster Schwerphase auf die Masse an Tensid bezogen wird: $S=m_{CDS}/m_{Surfactant}$. 
     30 Im betrachteten Konzentrationsbereich fällt das Solubilisierungspotential  bei Zugabe von Tensid zunächst deutlich und bei weiterer Tensidzugaben geringer ab. Der Verlauf lässt sich mit der Mizellbildung erklären. So lagern sich zunächst Tensidmoleküle an die Grenzfläche an, senken die Grenzflächenspannung und verbessern die Solubilisierung sehr rasch. Dieser Effekt wird bereits durch kleinste Mengen eines Emulgators erreicht. Bei erreichen der CMC ändert sich die Grenzflächenspannung nicht mehr und eine weitere Solubilisierung wird nur noch durch die Einlagerung in Mizellen erreicht. Da in einer Mizelle die DNAPL-Moleküle nicht nur angelagert, sondern komplett von Tensidmolekülen umschlossen werden, sind hier mehr Tensidmoleküle notwendig. Der Verbrauch an Tensid steigt im Verhältnis zur gelösten Schwerphase. 
    3031 
    3132Die gemessene Oberflächenspannung fällt zunächst steil ab um dann auf einem konstanten Niveau zu bleiben. Sie lag für die Kontrollproben ohne Tensid bei 65 mN/m, für alle anderen Proben  bei 40 mN/m. %Dies erklärt sich so, dass bei erreichen der CMC sämtliche Grenzflächen mit Tensidmolekülen besetzt sind und sich die Tensidmoleküle in den thermodynamisch nächstgünstigsten Zustand begeben. Sie lagern sich im inneren des Lösemittels zu Mizellen zusammen. Die Grenzflächen bleiben unverändert, also bleibt die Grenz-/ bzw Oberflächenspannung konstant mit erreichen der CMC. 
    32 Wie beschrieben ist dies ein Effekt der bei Überschreiten der CMC auftritt. Die Differenz der Oberflächenspannung der Kontrollproben zur Oberflächenspannung von Wasser (72,5 mN/m) wird verursacht durch die geringen Menge an gelöstem CS$_2$. Dieses löst sich in reinem Wasser zu 2 g/L. Wobei die Löslichkeit durch das bivalente Salz Calciumchlorid leicht erhöht sein kann. 
     33Wie beschrieben ist dies ein Effekt, der bei Überschreiten der CMC auftritt. Die Differenz der Oberflächenspannung der Kontrollproben zur Oberflächenspannung von Wasser (72,5 mN/m) wird verursacht durch die geringe Menge an gelöstem CS$_2$. Dieses löst sich in reinem Wasser zu 2 g/L. Wobei die Löslichkeit durch das bivalente Salz Calciumchlorid leicht erhöht sein kann. 
    3334 
    3435Die Dichte war für alle Proben nur gering erhöht mit 1,02-1,03 g/ml, wobei eine steigende Dichte mit steigender Tensid- und damit auch CS$_2$-Konzentration zu verzeichnen war. Ebenso verhielt es dich mit der Viskosität, die mit steigender Tensidkonzentration anstieg und ihr Maximum bei 1,6 m$^{2}$/s erreichte. 
     
    3738\subsection{Zusamenfassung und Bewertung} 
    3839 
    39 Bereits bei einer extrem niedrigen Tensidkonzentrationen von 0,3\%  kommt es zu einer schnellen und deutlichen Absenkung der Ober- und Grenzflächenspannung.  Die CMC wird also schon bei sehr niedrigen Tensidkonzentrationen erreicht. Passend dazu steigt das Volumen der leichten Phase bei überschreiten der CMC sprunghaft an. Dies erklärt sich durch den Platzbedarf der sich bildenten Mizellen. Der stetige Anstieg der gelösten Masse und der Dichte zeigt, dass die maximale Löslichkeit noch nicht erreicht ist und mit steigender Tensidkonzentration auch noch mehr DNAPL gelöst werden kann. Das Volumen der leichten Phase ändert sich hier aber nicht mehr. Die Mizellen werden nicht größer, sondern lagern  mehr DNAPL in ihr Inneres ein. Das führt zu einem Anstieg der Dichte. %Dadurch verringern sich dann wieder die Elektrostatischen Kräfte zwischen den Mizellen und somit der Platz- und Lösemittelbedarf.  
     40Bereits bei einer extrem niedrigen Tensidkonzentrationen von 0,3\%  kommt es zu einer schnellen und deutlichen Absenkung der Ober- und Grenzflächenspannung.  Die CMC wird also schon bei sehr niedrigen Tensidkonzentrationen erreicht. Passend dazu steigt das Volumen der leichten Phase bei Überschreiten der CMC sprunghaft an. Dies erklärt sich durch den Platzbedarf der sich bildenden Mizellen. Der stetige Anstieg der gelösten Masse und der Dichte zeigt, dass die maximale Löslichkeit noch nicht erreicht ist und mit steigender Tensidkonzentration auch noch mehr DNAPL gelöst werden kann. Das Volumen der leichten Phase ändert sich hier aber nicht mehr. Die Mizellen werden nicht größer, sondern lagern  mehr DNAPL in ihr Inneres ein. Das führt zu einem Anstieg der Dichte. %Dadurch verringern sich dann wieder die Elektrostatischen Kräfte zwischen den Mizellen und somit der Platz- und Lösemittelbedarf.  
    4041 
    4142 
     
    4445\subsection{Aussehen und Stabilität} 
    4546 
    46 Die Proben bildeten eine milchig weiße Leichtphase und eine unterschiedlich stark ausgeprägte, rosa bis rot gefärbte Mittelphase aus. Proben mit sehr hoher Tensidkonzentration wirkten schwammartig und waren sehr viskos. So war es nach Einstellen eines Gleichgewichtszustandes kaum mehr möglich, die Probe neu zu verschütteln. Koalszenz und damit Entmischung der Emulsion konnte über den Beobachtungszeitraum von zwei Wochen nicht festgetellt werden. 
     47Die Proben bildeten eine milchig weiße Leichtphase und eine unterschiedlich stark ausgeprägte, rosa bis rot gefärbte Mittelphase aus. Proben mit sehr hoher Tensidkonzentration wirkten schwammartig und waren sehr viskos. So war es nach Einstellen eines Gleichgewichtszustandes kaum mehr möglich, die Probe neu zu verschütteln. Koaleszenz und damit Entmischung der Emulsion konnte über den Beobachtungszeitraum von zwei Wochen nicht festgetellt werden. 
    4748 
    4849\subsection{Messergebnisse} 
     
    5657\end{figure} 
    5758 
    58 Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund 5\%. Das maximale Solubilisierungspotential wurde ebenfalls bei 5\% Tensid erreicht. Allerdings stieg die Viskosität ab 3\% Tensid an und überschritt  bei 5\% Tensid bereits  5 m$^{2}$/s. Oberhalb von 5\% Tensid stieg die Viskosität stark an, auf Werte über 40 m$^{2}$/s. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kapillardurchmesser 20 $µ$m ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare zurückdrücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet.  Sie dürften aber dennoch sehr hoch liegen. 
     59Die ermittelte Konzentration an gelöster Schwerphase erreichte ein Maximum bei einer Tensidkonzentration von rund 5\%. Das maximale Solubilisierungspotential wurde ebenfalls bei 5\% Tensid erreicht. Allerdings stieg die Viskosität ab 3\% Tensid an und überschritt  bei 5\% Tensid bereits  5 m$^{2}$/s. Oberhalb von 5\% Tensid stieg die Viskosität stark, auf Werte über \mbox{40 m$^{2}$/s}, an. In diesen Bereichen war mit dem verwendeten Ubbelohde-Viskosimeter (Kapillardurchmesser 20 $µ$m ) kaum noch eine Messung durchführbar. Ein Messdurchgang dauerte hier zehn Minuten. Eine Mehrfachbestimmung der selben Probe war nicht möglich, da sich die Probe nicht ohne starkes Aufschäumen in die Kapillare zurückdrücken ließ. Aufgrund des beobachteten Fließverhaltens ist anzunehmen, dass hier keine Newtonsche Flüssigkeit mehr vorliegt. Somit sind die Messwerte bei hohen Tensidkonzentrationen sehr wahrscheinlich überbewertet, dürften aber dennoch sehr hoch liegen. 
    5960 
    6061Die Oberflächenspannung lag für alle Tensid enthaltenden Proben  konstant bei \mbox{35 mN/m}, nur die Referenzproben ohne Tensid lagen über 60 mN/m.  Das entspricht etwa den Messwerten aus der CMC-Reihe.  
     
    6768%wie sich eine Erhöhung der Tensidkonzentration auf das Gesamtsystem auswirkt. Es sollte eine Aussage über die Tensidkonzentration mit der besten Solubilisierungsrate  (Masse geöster DNAPL / Masse eingesetztes Tensid) gemacht werden, sowie der Anstieg der Viskosität kritisch betrachtet werden. 
    6869 
    69 Das optimale Solubilisierungspotential liegt den Messwerten nach bei 2-5\% Tensid. Allerdings ist hier auch die Dichte und die Viskosität bereits stark erhöht. Durch die erhöhte Dichte kann die vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da der Druck ansteigt. Die Vorhersage des Verhaltens der Emulsion im Boden bei induziertem Fluss wird schlechter vorhersagbar. % genauer, mehr 
     70Das optimale Solubilisierungspotential liegt den Messwerten nach bei 2-5\% Tensid. Allerdings ist hier auch die Dichte und die Viskosität bereits stark erhöht. Durch die erhöhte Dichte kann die vertikale Mobilisierung forciert werden. Dem entgegen wirkt zwar die hohe Viskosität, was aber seinerseits zu Problemen führen kann, da der Druck im porösen Medium bei gleicher Fließrate ansteigt. Die Vorhersage des Verhaltens der Emulsion im Boden bei induziertem Fluss wird schlechter vorhersagbar. % genauer, mehr 
    7071 
    7172 
     
    7374\section{Vergleich mit den Ergebnissen früherer Versuchsreihen} 
    7475 
    75 In Abbildung \ref{pic:batch_med} sind die Messwerte der im Rahmen der Arbeit durchgeführten Versuche dargestellt und werden verglichen mit dem Mittelwerten aus allen durchgeführten Versuchen, also den Werten aus früheren Versuchen und den Werten aus den hier beschriebenen Versuchen. Die getroffenen Aussagen können hier nochmal verbessert  werden, durch die größere Anzahl an betrachteten Messpunkten. Bei betrachten des Solubilisierungspotentials wird deutlich, dass die Effktivität zunächst stark abnimmt. Ab einer Tensidkonzentration von einem Prozent verändert sich das Solubilisierungspotential nur noch langsam. Die Konzentration an gelöstem CS$_2$ steigt bis zu einer Tensidkonzentration von 2,25\% stark an. Bei höheren Tensidkonzentrationen verändert sich Konzentration an gelöstem DNAPL nicht mehr. Diese beiden Betrachtungen gemeinsam zeigen, dass mehr als zwei Prozent Tensid keinen weiteren positiven Nutzen haben. Im Gegenteil: Durch die gleichzeitig erhöhte Dichte der leichten Phase steigt die Gefahr von Mobilisierung, bei über fünf Prozent Tensid erhöht sich zudem die Viskosität stark. 
     76In Abbildung \ref{pic:batch_med} sind die Messwerte der im Rahmen der Arbeit durchgeführten Versuche dargestellt und werden verglichen mit den Mittelwerten aus allen durchgeführten Versuchen, also den Werten aus früheren Versuchen und den Werten aus den hier beschriebenen Versuchen. Die getroffenen Aussagen können hier nochmal verbessert  werden, durch die größere Anzahl an betrachteten Messpunkten. Bei betrachten des Solubilisierungspotentials wird deutlich, dass die Effktivität zunächst stark abnimmt. Ab einer Tensidkonzentration von einem Prozent verändert sich das Solubilisierungspotential nur noch langsam. Die Konzentration an gelöstem CS$_2$ steigt bis zu einer Tensidkonzentration von 2,25\% stark an. Bei höheren Tensidkonzentrationen verändert sich Konzentration an gelöstem DNAPL nicht mehr. Diese beiden Betrachtungen gemeinsam zeigen, dass mehr als zwei Prozent Tensid keinen weiteren positiven Nutzen haben. Im Gegenteil: Durch die gleichzeitig erhöhte Dichte der leichten Phase steigt die Gefahr von Mobilisierung, bei über fünf Prozent Tensid erhöht sich zudem die Viskosität stark. 
    7677 
    7778\begin{figure} 
     
    9091\label{Aussehen} 
    9192 
    92 \subsubsection{Reihe 1
     93\subsubsection{Reihe 1: Kombination einer Stammemulsion mit Linkern und Cotensid
    9394 
    9495\begin{figure} 
    9596\centering 
    9697\includegraphics[width=0.8\textwidth]{Reihe_1} 
    97 \caption{Reihe 1
     98\caption{Kombination einer Stammemulsion mit Linkern und Cotensid
    9899\label{pic:Reihe 1} 
    99100\end{figure} 
     
    103104Decanol hat eine extrem niedrige Löslichkeit in Wasser von 37 mg/L. Beim Zutropfen sammelte es sich ebenfalls an der Oberfläche, wo es sich direkt rötlich färbte und das CS$_2$ förmlich aus der Lösung zu ziehen schien. Isopropanol vermischte sich problemlos mit der Emulsion und führte zur Entstehung einer deutlich ausgeprägten rosa gefärbten Mittelphase, wie auch Lutensol ON60 und Igepal CO-630 und in geringem Maße PEG.  
    104105 
    105 Beim Verschütteln der Probe mit Lutensit A-BO bildete sich eine stark ausgeprägte, deutlich rosa gefärbte, schwammige Mittelphase aus, siehe Abbildung \ref{pic:Lutensol}. Außerdem war eine großer Anteil an nicht solubilisierter Schwerphase vorhanden. Die Mittelphase war über den Beobachtungszeitraum stabil, bei konstant auf 20°C gehaltener Temperatur. Nach der Lagerung im Kühlraum und neuerlichem Aufschütteln der Proben konnten diese Strukturen jedoch nicht wieder hergestellt werden. 
     106Beim Verschütteln der Probe mit Lutensit A-BO bildete sich eine stark ausgeprägte, deutlich rosa gefärbte, schwammige Mittelphase aus (siehe Abbildung \ref{pic:Lutensol}). Außerdem war eine großer Anteil an nicht solubilisierter Schwerphase vorhanden. Die Mittelphase war über den Beobachtungszeitraum stabil, bei konstant auf 20°C gehaltener Temperatur. Nach der Lagerung im Kühlraum und neuerlichem Aufschütteln der Proben konnten diese Strukturen jedoch nicht wieder hergestellt werden. 
    106107 
    107108\begin{figure} 
     
    118119 
    119120 
    120 \subsubsection{Reihe 2
     121\subsubsection{Reihe 2: Erstellen eines Dreikomponentensystems vor Zugabe des DNAPLs
    121122 
    122123\begin{figure} 
    123124\centering 
    124125\includegraphics[width=0.8\textwidth]{Reihe_2} 
    125 \caption{Reihe 2
     126\caption{Erstellen eines Dreikomponentensystems vor Zugabe des DNAPLs
    126127\label{pic:Reihe 2} 
    127128\end{figure} 
     
    140141 
    141142 
    142 Das Vorrangige Ziel, durch die Zugabe eines Linkers oder Cotensids ein Mikroemulsionssystem zu erzeugen, wurde unter  den gegebenen Bedingungen mit keinem der Additive erreicht. Dies kann zum einen an generell ungeeigneten Additiven liegen, aber auch an den experimentellen Bedingungen wie Reihenfolge der Zugabe, Zugabegeschwindigkeit und Equilibrationszeit oder an Randbedingungen, wie Temperatur und Salinität.  \\ 
    143 Das es Grundsätzlich möglich ist, eine mit Brij 97 stabilisierte Makroemulsion mit einem Linker zu brechen zeigen die Versuche von \citet{Zhou.2000}. Mit einer Mischung aus drei Prozent Brij 97 und drei Prozent IPA erzielte Zhou gute Erfolge bei der Sanierung von PCE. Hier wurde IPA erfolgreich eingesetzt um die Makroemulsion zu brechen und so Mikroemulsion zu erhalten. Zhou zeigt in seinen Versuchen aber auch, das das Brechen der Emulsion mit IPA bei Systemen mit anderen Tensiden nicht funktioniert. Der Linker muss auf das Gesamtsystem (DNAPL, Tensid, Wasser, Linker) abgestimmt sein. 
    144 Gleiches gilt auch für die Cotenside. Erwünscht ist ein vermehrtes Eindringen des Cotensides in die Schwerphase. Dies lässt sich auf verschiedenen Wegen erreichen. Ein  anionisches Tensid reagiert  potentiell sensitiv auf die Erhöhung der Ionenkonzentration.  Bei steigender Salinität, wird der HLB-Wert kleiner. \citep{Sabatini.2000}. Das heißt die Öllöslichkeit steigt. Daher wäre die Erhöhung der Salzkonzentration in der Lösung eine Möglichkeit das Eindringen des anionischen Cotensides in die Schwerphase zu erhöhen. Einziges in den beschriebenen Versuchen eingesetztes anionisches Cotensid war Lutensit A-BO. Hier erscheint der zusätzliche Einsatz von Salz allerdings nicht sinnvoll, da das Cotensid eine bereits schlechte Löslichkeit in der wässrigen Tensidlösung zeigte (vgl. Kap. \ref{Reihe 2}) und sich die Löslichkeit für CS$_2$ verschlechterte (vgl. Kap. \ref{Aussehen}). Hier liegt die Vermutung nahe, dass Lutensit A-BO bereits eher lipophil ist, aber bevorzugt an Stelle von CS$_2$ solubilisiert wird.\\  
     143Das vorrangige Ziel, durch die Zugabe eines Linkers oder Cotensids ein Mikroemulsionssystem zu erzeugen, wurde unter  den gegebenen Bedingungen mit keinem der Additive erreicht. Dies kann zum einen an generell ungeeigneten Additiven liegen, aber auch an den experimentellen Bedingungen wie Reihenfolge der Zugabe, Zugabegeschwindigkeit und Equilibrationszeit oder an Randbedingungen, wie Temperatur und Salinität.  \\ 
     144Dass es grundsätzlich möglich ist, eine mit Brij 97 stabilisierte Makroemulsion mit einem Linker zu brechen, zeigen die Versuche von \citet{Zhou.2000}. Mit einer Mischung aus drei Prozent Brij 97 und drei Prozent IPA erzielte Zhou gute Erfolge bei der Sanierung von PCE. Hier wurde IPA erfolgreich eingesetzt um die Makroemulsion zu brechen und so Mikroemulsion zu erhalten. Zhou zeigt in seinen Versuchen aber auch, das das Brechen der Emulsion mit IPA bei Systemen mit anderen Tensiden nicht funktioniert. Der Linker muss auf das Gesamtsystem (DNAPL, Tensid, Wasser, Linker) abgestimmt sein. 
     145Gleiches gilt auch für die Cotenside. Erwünscht ist ein vermehrtes Eindringen des Cotensides in die Schwerphase. Dies lässt sich auf verschiedenen Wegen erreichen. Ein  anionisches Tensid reagiert  potentiell sensitiv auf die Erhöhung der Ionenkonzentration.  Bei steigender Salinität wird der HLB-Wert kleiner \citep{Sabatini.2000}, das heißt die Öllöslichkeit steigt. Daher wäre die Erhöhung der Salzkonzentration in der Lösung eine Möglichkeit das Eindringen des anionischen Cotensides in die Schwerphase zu erhöhen. Einziges in den beschriebenen Versuchen eingesetztes anionisches Cotensid war Lutensit A-BO. Hier erscheint der zusätzliche Einsatz von Salz allerdings nicht sinnvoll, da das Cotensid eine bereits schlechte Löslichkeit in der wässrigen Tensidlösung zeigte (vgl. Kap. \ref{Reihe 2}) und sich die Löslichkeit für CS$_2$ verschlechterte (vgl. Kap. \ref{Aussehen}). Hier liegt die Vermutung nahe, dass Lutensit A-BO bereits eher lipophil ist, aber bevorzugt an Stelle von CS$_2$ solubilisiert wird.\\  
    145146Wie  sich die Temperatur bei der Emulsifikation auf die Tröpfchengröße auswirkt zeigt \citet{Shinoda.1969} mit seinen Untersuchungen an einer zu Brij 97 verwandten Gruppe von Tensiden. Es  wird außerdem der Zusammenhang zwischen Phaseninversionstemperatur und Größe der hydrophilen Gruppe des Tensids  dargestellt. Demnach gilt: Die PIT variiert mit der Schwerphase und der Länge des hydrophilen Teils des Tensids.  
    146 Allgemein lässt sich sagen, dass die Wechselwirkungen zwischen hydrophilem Tensidteil und Wasser bei abnehmender Temperatur steigen.  Eine Vergrößerung der hydrophilen Gruppe führt ebenfalls zu steigenden Wechselwirkungen mit Wasser. Daher ist mit größer werdem hydrophilen Anteil eine höhere Temperatur nötig um die Tröpfchen zu verkleinern.  
    147 Will man also bei niedriger Temperatur arbeiten, sollte man ein Tensid mit kleiner Kopfgruppe verwenden. Die Emulsifikation  nach der PIT-Methode wird in einem Temperaturbereich knapp unterhalb der PIT durchgeführt und die Emulsion dann rasch auf Lagerungstemperatur abgekühlt um stabile Emulsionen mit geringen Tröpfchengrößen zu erhalten.\citep{Shinoda.1969}. Die PIT-Methode kann für das vorliegende System allerdings nur eingeschränkt zum Einsatz kommen, da aufgrund des hohen Dampfdrucks des Schwefelkohlenstoffs nur eine moderate Temperaturerhöheung möglich ist. 
     147Allgemein lässt sich sagen, dass die Wechselwirkungen zwischen hydrophilem Tensidteil und Wasser bei abnehmender Temperatur steigen.  Eine Vergrößerung der hydrophilen Gruppe führt ebenfalls zu steigenden Wechselwirkungen mit Wasser. Daher ist mit größer werdendem hydrophilen Anteil eine höhere Temperatur nötig, um die Tröpfchen zu verkleinern.  
     148Will man also bei niedriger Temperatur arbeiten, sollte man ein Tensid mit kleiner Kopfgruppe verwenden. Die Emulsifikation  nach der PIT-Methode wird in einem Temperaturbereich knapp unterhalb der PIT durchgeführt und die Emulsion dann rasch auf Lagerungstemperatur abgekühlt um stabile Emulsionen mit geringen Tröpfchengrößen zu erhalten.\citep{Shinoda.1969}. Die PIT-Methode kann für das vorliegende System allerdings nur eingeschränkt zum Einsatz kommen, da aufgrund des hohen Dampfdrucks des Schwefelkohlenstoffs nur eine moderate Temperaturerhöhung möglich ist.