Show
Ignore:
Timestamp:
10/23/12 23:38:40 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Kapitel_4.tex

    r225 r228  
    1616\subfigure[Layering im Feinsand] 
    1717{\includegraphics[width=0.49\textwidth]{col_selection/layering_col12_fine}} 
    18 \subfigure[Lufteinschlüsse  im Mittelsand]%hier wär ein besseres Bild schön, man erkennt kaum was 
    19 {\includegraphics[width=0.49\textwidth]{col_selection/Luft_col10_med}
     18\subfigure[Lufteinschlüsse  im Mittelsand]%hier wär ein besseres Bild schön, man erkennt kaum was-> Lufteins 
     19{\includegraphics[width=0.49\textwidth]{col_selection/Luft}}%{col_selection/Luft_col10_med
    2020\caption{Unregelmäßigkeiten in den Säulen} 
    2121\label{pic:säulenprobs} 
     
    2323 
    2424 
    25 Abhängig von der Homogennität der Sandpackung konnte während des Aufsättigens der Säulen mit CS$_2$ die Ausbildung von Schichten ("layering", vgl. Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes Rieseln des Sandes, beispielsweise, wenn  
    26 dieser feucht ist,  
    27 das Fallrohr nicht gleichmäßig schwingt oder die Säule schief eingebaut ist. Durch die Schichtung ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.%\bigskip 
    28  
    29 Vor allem im Mittelsand war noch eine weitere Form von Unregelmäßigkeit zu beobachten: der Einschluss von Luft (vgl. Abbildung \ref{pic:säulenprobs}). Die Lufteinschlüsse werden durch die veränderte Lichtbrechung am Säulenrand sichtbar. Luft in der Säule ist unerwünscht, da sie Poren blockiert. Dies führt dazu, dass sich feste Fließpfade ausbilden und daher nicht mehr alle Bereiche der Säule in gleichem Maße durchströmt werden.  Es gibt mehrere Möglichkeiten, wie Luft in die Säule gelangen kann. Zum einen kann sie sich vor dem Wassersättigen bereits in der Säule befinden. Dies passiert dann, wenn das vorangegangene CO$_2$-Fluten nicht ausreichte oder die Säule vor dem Wassersättigen längere Zeit mit undichten Verschlüssen stand. Luft kann aber auch mit dem Fluid eingetragen werden. Dies tritt zum Beispiel durch nicht ausreichend entgastes Wasser oder Eingasen in Leitungen und Verbindungen durch den Unterdruck der Strömung sowie den Partialdruck der Luft auf. Werden Luftblasen erst nach dem Aufsättigen mit CS$_2$ festgestellt, ist es auch möglich, dass dieses aus der Lösung ausgegast ist. Aufgrund der hohen Flüchtigkeit der Substanz kann dies vor allem bei höheren Temperaturen vorkommen. 
    30  
    31  
    32 Finger treten dann auf, wenn die treibende Kraft der Strömung größer wird, als die Kapillarkräfte (siehe Abbildung \ref{fingering_mob} in der zweiten Säule  von links (Nr. 32)). Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch die Destabilisierung der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt worden waren. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt. Im Oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund 80\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. 
     25Abhängig von der Homogennität der Sandpackung konnte während des Aufsättigens der Säulen mit CS$_2$ die Ausbildung von Schichten ("layering", vgl. Abbildung \ref{pic:säulenprobs}) beobachtet werden. Auffällig war dieses Phänomen vornehmlich im Feinsand. Die Schichtungen entstehen während des Packungsvorgangs, werden aber erst sichtbar durch den angefärbten DNAPL, der sich zwischen die Schichtungen legt. Verursacht wird es durch nicht konstantes Rieseln des Sandes, beispielsweise, wenn das Fallrohr nicht gleichmäßig schwingt oder die Säule schief eingebaut ist. Durch die Schichtung ist die Verteilung des DNAPLs nicht homogen, es entstehen Bereiche mit größerer und kleinerer Einlagerung. Dadurch kann der DNAPL auch nicht gleichmäßig ausgetragen werden. Dies erschwert die Bewertung der Sanierung und die Vergleichbarkeit verschiedener Versuche.%\bigskip 
     26 
     27Vor allem im Mittelsand war noch eine weitere Form von Unregelmäßigkeit zu beobachten: der Einschluss von Luft (vgl. Abbildung \ref{pic:säulenprobs}). Die Lufteinschlüsse werden durch die veränderte Lichtbrechung am Säulenrand sichtbar. Luft in der Säule ist unerwünscht, da sie Poren blockiert und somit die hydraulische Leitfähigkeit reduziert. Dies führt dazu, dass sich feste Fließpfade ausbilden und daher nicht mehr alle Bereiche der Säule in gleichem Maße durchströmt werden.  Es gibt mehrere Möglichkeiten, wie Luft in die Säule gelangen kann. Zum einen kann sie sich vor dem Wassersättigen bereits in der Säule befinden. Dies passiert dann, wenn das vorangegangene CO$_2$-Fluten nicht ausreichte oder die Säule vor dem Wassersättigen längere Zeit mit undichten Verschlüssen stand. Luft kann aber auch mit dem Fluid eingetragen werden. Dies tritt zum Beispiel durch nicht ausreichend entgastes Wasser oder Eingasen in Leitungen und Verbindungen durch den  Partialdruck der Luft auf. Werden Luftblasen erst nach dem Aufsättigen mit CS$_2$ festgestellt, ist es auch möglich, dass dieses aus der Lösung ausgegast ist. Aufgrund der hohen Flüchtigkeit der Substanz kann dies vor allem bei höheren Temperaturen vorkommen. 
     28 
     29 
     30Finger treten dann auf, wenn die treibende Kraft der Strömung größer wird, als die Kapillarkräfte (siehe Abbildung \ref{fingering_mob} in der zweiten Säule  von links (Nr. 32)). Das Verhältnis dieser beiden Kräfte wird durch die Bondzahl ausgedrückt (Gleichung \ref{eqn:bond number}). Sie entstehen durch die Destabilisierung der Grenzfläche zwischen zwei nichtmischbaren Fluiden, wenn das eine in das andere eindringt. Die in Abbildung \ref{fingering_mob} zu sehenden Farbfinger bestehen vermutlich größtenteils aus Tracerfarbstoff, da die beiden mit Feinsand gepackten Säulen versehentlich zu stark angefärbt worden waren. Zum Zeitpunkt als das Foto entstand, war bereits ein Großteil des DNAPLs entfernt, wie auch die Betrachtung der Analysedaten zeigt. Im oberen Teil der Säule ist noch die typisch weiße Emulsion zu sehen, mit der rund 80\% des DNAPLs entfernt werden, während darunter die klare Tensidlösung nachläuft und in den Farbstoff eindringt. 
    3331 
    3432Bei anderen Versuchen mit deutlich geringerer Tracerkonzentration konnten keine derartig ausgeprägten Finger im Feinsand beobachtet werden. Im Mittelsand wurden bei einzelnen Säulen vergleichbare Beobachtungen gemacht, wobei die Unregelmäßigkeit immer im Zusammenhang mit Mobilisierung auftrat. Da die Beobachtung stets nur bei einer von zwei parallel betriebenen Säulen gemacht wurde, wird dies nicht durch die Fließrate oder Tensidkonzentration verursacht. Wahrscheinlicher ist, dass eine unregelmäßige Packung und Lufteinschlüsse in der Säule dafür verantwortlich waren. 
     
    4341\end{figure} 
    4442 
    45 Das die hohe Tracerkonzentration den gesamten Chemismus beeinflusst lässt sich bei Betrachtung von Abbildung \ref{gekrissel} erahnen. Dort ist die letzten Probe zu sehen, die bei der finalen Extraktion mit Isopropanol genommen wurden. Es kommt deutlich sichtbar zur Polymerisation und dem Ausfallen makromolekularer Verbindungen aus der Lösung. Vergleichsmessungen der Grenzflächenspannung zwischen Wasser und unterschiedlich stark angefärbtem CS$_2$ haben ebenfalls einen deutlichen Einfluss des Farbstoffes auf das System gezeigt. 
     43Dass die hohe Tracerkonzentration den gesamten Chemismus beeinflusst lässt sich bei Betrachtung von Abbildung \ref{gekrissel} erahnen. Dort ist die letzte Probe zu sehen, die bei der finalen Extraktion mit Isopropanol genommen wurde. Es kommt deutlich sichtbar zur Polymerisation und dem Ausfallen makromolekularer Verbindungen aus der Lösung. Vergleichsmessungen der Grenzflächenspannung zwischen Wasser und unterschiedlich stark angefärbtem CS$_2$ haben ebenfalls einen deutlichen Einfluss des Farbstoffes auf das System gezeigt. 
    4644 
    4745\begin{figure} 
     
    5351 
    5452In Abbildung \ref{fingering_mob} ist außerdem in der Säule rechts (Nr. 34) zu sehen, wie die Emulsion absinkt, das heißt, vertikal mobilisiert wird. 
    55 Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrigen Phase bewegen kann.%die beiden Phasen unabhängig ineinander bewegen können. Je nachdem, ob die Aufwärtsströmung oder die Erdbeschleunigung als treibende Kraft dominiert, bewegt sich der DNAPL als zusammenhängende Phase  mit der Strömung, oder aber er sinkt  nach unten ab. % Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. 
    56 Mobilisierung trat im Mittelsand bei einigen Säulen auf. Im Feinsand wurde sie nur bei einer Säule (Nr. 52) beobachtet, als der Fluss vorübergehend unterbrochen war. Aufgrund der größeren Poren sind  die Kapillarkräfte im Mittelsand geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number}) geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder  Grenzflächenspannung, das Mobilisationsrisiko zu minimieren. Siehe hierzu Kapitel \ref{nt}.\\ 
     53Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrige Phase bewegen kann. %die beiden Phasen unabhängig ineinander bewegen können. Je nachdem, ob die Aufwärtsströmung oder die Erdbeschleunigung als treibende Kraft dominiert, bewegt sich der DNAPL als zusammenhängende Phase  mit der Strömung, oder aber er sinkt  nach unten ab. % Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. 
     54Mobilisierung trat im Mittelsand bei einigen Säulen auf. Im Feinsand wurde sie nur bei einer Säule (Nr. 52) beobachtet, als der Fluss vorübergehend unterbrochen war. Aufgrund der größeren Poren sind  die Kapillarkräfte im Mittelsand geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trapping Number (Gleichung \ref{eqn:trapping number}) geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder  Grenzflächenspannung, das Mobilisierungsrisiko zu minimieren. Siehe hierzu Kapitel \ref{nt}.\\ 
    5755 
    5856\begin{figure} 
     
    7977Wissenswert ist auch, dass noch kein so großes Volumen an Tensidlösung in die Säule gepumpt wurde, wie es im dritten Bild den Anschein hat. Das Tensid  dringt  in die DNAPL-Phase ein und bewegt sich dadurch scheinbar schneller als durch die Strömung bedingt. Da dies leichter bei größeren Poren und der daher größeren Oberfläche der DNAPL-Blobs geht, werden die beiden mit Mittelsand gepackten Säulen (rechts) anscheinend schneller als die Feinsandsäulen (links) mit Tensidlösung geflutet. Tatsächlich ist die Fließrate aber die selbe.  
    8078Andererseits wurde der Feinsand (links)  schneller saniert. Die weiße Emulsion schob sich  
    81 pulsförmig durch die Säulen. Im Mittelsand dauerte dies länger. Die größeren DNAPL-Blobs  
    82 konnten nicht auf einmal solubilisiert werden, so dass die Kontaktzeit zwischen Tensid und DNAPL und damit der Austrag der Emulsion verlängert wurde. Aber auch die auftretende Mobilisierung im Mittelsand spielt eine Rolle für die Austragsdauer.  
     79pulsförmig durch die Säulen. Im Mittelsand dauerte dies länger, es wurden mehrere Porenvolumen benötigt. Bedingt wird dies durch den im Mittelsand kleineren Gradienten, aber auch die auftretende Mobilisierung  spielt eine Rolle für die längere Austragsdauer.  %größeren DNAPL-Blobs konnten nicht auf einmal solubilisiert werden, sodass die Kontaktzeit zwischen Tensid und DNAPL und damit der Austrag der Emulsion verlängert wurde.  
    8380 
    8481\begin{figure} 
    8582\centering 
    8683\includegraphics[width=0.8\textwidth]{col_selection/gequollen_col7_med} 
    87 \caption{Gequollenes Phase im Mittelsand} 
     84\caption{Gequollene Phase im Mittelsand} 
    8885\label{gequollen} 
    8986\end{figure} 
     
    116113 
    117114 
    118 Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen 29-34) zusammen. Für beide Versuche wurde eine Tensidlösung mit zwei Prozent Tensid zur Sanierung verwendet und eine Fließrate von 1 ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen 35-38), der mit einer Fließrate von ebenfalls 1 ml/min, aber mit einer nur einprozentigen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer einprozentigen Tensidlösung bei einer reduzierten Fließrate von 0,5 ml/min durchgeführt wurden. 
     115Die Messergebnisse der einzelnen Versuche sind nachfolgend in drei Graphen zusammengefasst dargestellt. Abbildung \ref{7+8} fasst die ersten beiden Versuche (Säulen 29-34) zusammen. Für beide Versuche wurde eine Tensidlösung mit 2\% Tensid zur Sanierung verwendet und eine Fließrate von 1 ml/min eingestellt. Abbildung \ref{9} zeigt die Ergebnisse vom dritten Versuch (Säulen 35-38), der mit einer Fließrate von ebenfalls 1 ml/min, aber mit einer nur 1\%-igen Tensidlösung durchgeführt wurde. Abbildung \ref{10+12} zeigt die beiden letzten Versuche, die mit einer 2\%-igen Tensidlösung bei einer reduzierten Fließrate von 0,5 ml/min durchgeführt wurden. 
    119116 
    120117 
     
    130127\subsubsection{Konzentration CS$_2$} 
    131128 
    132 Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben vom Versuch in Feinsand bei 1\%Tensid und einer Fließrate von 1 ml. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26 g/L und  7 g/L). Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ waren hier nicht mehr wesentlich erhöht (für die abgebildete Reihe max. 2 g/L). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6 g/L). 
     129Abbildung \ref{pic:abgefuellt} zeigt die abgefüllten Proben vom Versuch in Feinsand bei 1\%Tensid und einer Fließrate von 1 ml. Die erste Probe (im Bild ganz links) ist klar und nicht gefärbt. Hier ist noch kein Tensid enthalten. Die nächsten Proben zeigen die charakteristische weiß bis rosa gefärbte Emulsion. Hier sind die maximalen Konzentrationen an CS$_2$ enthalten. Die stark rot gefärbten Proben enthalten bereits wieder eine geringere CS$_2$-Konzentration (für die abgebildeten Proben 26 g/L und  7 g/L), das heißt, der verwendete Farbstoff ist am Korngerüst sorbiert. Das Umschalten auf Wasser erfolgte, nachdem das Eluat keinen Farbstoff mehr enthielt, die Konzentrationen an CS$_2$ waren hier nicht mehr wesentlich erhöht (für die abgebildete Reihe max. 2 g/L). Die letzte Probe ist wieder deutlich rosa gefärbt. Hier sind die Reste enthalten, die nicht von der Tensidspülung solubilisiert werden konnten und mit einer finalen Isopropanolspülung entfernt wurden (hier 6 g/L). 
    133130 
    134131 
     
    139136\end{figure} 
    140137 
    141 Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von einem auf zwei Prozent führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1 ml/min (Abbildung \ref{7+8}) und im Mittelsand bei 1\% und 0,5 ml/min (Abbildung \ref{10+12}) gefunden. 
    142  
    143  
    144 Im Feinsand erfolgte der Austrag schneller. Bei  Betrachtung der Masseaustragskurven ist zu erkennen, dass sich die Kurve im  Feinsand nach zweieinhalb Porenvolumen asymptotisch einem Endwert annähert. Dies geschieht im Mittelsand erst nach drei Porenvolumen. Beim ersten Säulenversuch (Säulen 29 und 30) erfolgte der Wechsel von Tensid auf Wasserspülung deutlich früher (zwei PV) als bei den weiteren Versuchen (vier bis fünf PV). Dies hatte im Feinsand keine Auswirkungen auf den Austrag. 
     138Der größte Teil an DNAPL wurde mit den ersten 2 Porenvolumen entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von 1\% auf 2\% führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1 ml/min (Abbildung \ref{7+8}) und im Mittelsand bei 1\% und 0,5 ml/min (Abbildung \ref{10+12}) gefunden. 
     139 
     140 
     141Im Feinsand erfolgte der Austrag schneller. Bei  Betrachtung der Masseaustragskurven ist zu erkennen, dass sich die Kurve im  Feinsand nach 2,5 Porenvolumen asymptotisch einem Endwert annähert. Dies geschieht im Mittelsand erst nach 3 Porenvolumen. Beim ersten Säulenversuch (Säulen 29 und 30) erfolgte der Wechsel von Tensid auf Wasserspülung deutlich früher (zwei Porenvolumen) als bei den weiteren Versuchen (vier bis fünf Porenvolumen). Dies hatte im Feinsand keine Auswirkungen auf den Austrag. 
    145142Im Mittelsand dagegen war die ausgetragene Masse deutlich geringer.\\ 
    146143%Wie wirkt sich die unterschiedliche Initialsättigung auf den Masseaustrag aus, wie wahrscheinlich stimmen die Inis??? Haut das tatsächlich hin mit dem V_w=V_cs2??? Differenzen durch Inhomogenitäten und luft in der Säule berücksichtigen 
    147 Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als 50 g/L erreicht. Konzentrationen von 200 g DNAPL wurden erst mit 2,5\% Tensid erreicht (vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}). 
    148 Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei früheren Bachversuchen bereits vererinzelt beobachteter Effekt aufgetreten sein: Dort hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. 
     144Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit 1\%-igen Tensidmischungen Konzentrationen von weniger als 50 g/L erreicht. Konzentrationen von 200 g DNAPL wurden erst mit 2,5\% Tensid erreicht (vgl. Batchversuche Kapitel \ref{Ergebnisse Batch}). 
     145Das kann verschiedene Ursachen haben. Hier könnte ein bei früheren Bachversuchen bereits vereinzelt beobachteter Effekt aufgetreten sein: Dort hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. 
    149146Eine weitere mögliche Erklärung ist die Stabilisierung durch Feststoffpartikel (Pickering-Emulsion, vgl. Batchversuche Kapitel \ref{Einfuehrung}).  
    150 Eine andere Möglichkeit ist die bessere Angreifbarkeit des feinverteilten DNAPLs. Feldversuche zur PAK-Sanierung der Landesanstalt für Umweltschutz Baden-Württemberg haben gezeigt, dass sich dispers verteilte kleine DNAPL-Tröpfchen gut mittels Tensidspülung sanieren lassen, nicht aber größere Blobs oder Pools. \citep{LUBW.2001}. Dieser Fall wäre denkbar unter der Annahme, dass die Dispersion, die durch das Verschütteln der Batchansätze entsteht, nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Eine vollständige Entmischung der Batchansätze konnte jedoch nicht beobachtet werden. 
     147Eine andere Möglichkeit ist die bessere Angreifbarkeit des feinverteilten DNAPLs. Feldversuche zur PAK-Sanierung der Landesanstalt für Umweltschutz Baden-Württemberg (jetzt: Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg) haben gezeigt, dass sich dispers verteilte kleine DNAPL-Tröpfchen gut mittels Tensidspülung sanieren lassen, nicht aber größere Blobs oder Pools \citep{LUBW.2001}. Dieser Fall wäre denkbar unter der Annahme, dass die Dispersion, die durch das Verschütteln der Batchansätze entsteht, nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Eine vollständige Entmischung der Batchansätze konnte jedoch nicht beobachtet werden. 
    151148 
    152149 
     
    154151\subsection*{Wiederfindung} 
    155152 
    156 Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt  die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_2$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Wiederfindung von 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach drei Porenvolumen erreicht. Die Sanierungseffizienz bezogen auf die  Inititialsättigung lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung.  
     153Die Sanierung lief im feinen Sand etwas schneller ab als im Mittelsand. Dies zeigt  die steilere Kurve in den Graphen und passt zur Beobachtung der Säulen, wo die Emulsion die Säule im Feinsand früher als im Mittelsand vollständig durchlaufen hatte. Das Aufquellen des Tensids zu Beginn der Sanierung war im Mittelsand allerdings stärker ausgeprägt. In den Graphen dargestellt ist die normalisierte Wiederfindungsrate. Das heißt, die Werte wurden auf die Absolutmasse an wiedergefundenem CS$_2$, inklusive dem Nachspülen mit Isopropanol und Wasser, bezogen. Eine Wiederfindung von 80\% der normalisierten Werte wurde im Feinsand nach zwei und im Mittelsand nach 3 Porenvolumen erreicht. Die Sanierungseffizienz bezogen auf die  Inititialsättigung lag für Feinsand bei durchschnittlich 80\% Wiederfindung und für Mittelsand bei durchschnittlich 70\% Wiederfindung.  
    157154 
    158155 
     
    171168\subsection*{Druck} 
    172169 
    173 Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen. \citep{Lee.2001, LUBW.2001})  
    174 und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen sowie zu nicht durchströmten, ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es Gebietsweise zu Mobilisierung des DNAPLs kommen kann. 
     170Tenside können im Boden zu einer Verminderung der hydraulischen Durchlässigkeit des Bodens führen \citep{Lee.2001, LUBW.2001}).  
     171und damit einen Anstieg des Druckes verursachen. Letztlich kommt es zu schnell durchströmten, sich aufweitenden Fließwegen sowie zu nicht durchströmten, ruhenden Bereichen im Aquifer. Beides führt zu einer Verschlechterung der Sanierungssituation. Eine Veränderung des Druckes führt damit auch zu einer Verschiebung des Kräftegleichgewichts zwischen haltenden und treibenden Kräften, so dass es gebietsweise zu Mobilisierung des DNAPLs kommen kann. 
    175172 
    176173Aufgrund von Problemen bei der Kalibrierung der Druckaufnehmer liegen nur für einen Teil der Versuche Druckwerte vor, welche durch unterschiedliche Kalibrierung auch nicht unmittelbar zu vergleichen sind. 
    177 Bezugsgröße muss der Differenzdruck sein, der sich bei Wasserspülung vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. %Das sollt ich vielleicht noch ausprobieren, hab ich da Druckwerte für Wasser??? Nein, für Col10 nur Wasser nach Sanierung... 
     174Bezugsgröße muss der Differenzdruck sein, der sich bei Wasserspülung mit gleicher Fließgeschwindigkeit vor der Sanierung einstellt. Über diesen lässt sich die Ausgangspermeabilität der Säule bestimmen. %Das sollt ich vielleicht noch ausprobieren, hab ich da Druckwerte für Wasser??? Nein, für Col10 nur Wasser nach Sanierung... 
    178175Für die beiden letzten Versuche sind Druckverlauf und daraus errechnete Permeabilität in den Abbildungen \ref{pic:pd10} und \ref{pic:pd12} grafisch dargestellt.   
    179 Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit  dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Tensidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an. Der gemessene Differenzdruck bei Säule 46 (siehe Abbildung \ref{pic:pd10} blieb über die gesamte Sanierungsdauer konstant. Hier liegt ein Messfehler vor, vermutlich verursacht durch Luftblasen in den Druckleitungen, sodas eine sinnvolle Auswertung nicht möglich ist. 
    180  
    181  
    182 \begin{figure} 
    183 \centering 
    184 \includegraphics[scale=1]{col10_pd} 
     176Zu Beginn der Sanierung kommt es zunächst zu einem deutlichen Anstieg des Druckes. Der Druck fällt jedoch schnell wieder ab mit  dem Austrag der weißen Emulsion aus der Säule, da die Viskosität der nachlaufenden Tensidlösung gegenüber Wasser nicht relevant erhöht ist. Die Permeabilität steigt entsprechend über den Sanierungsverlauf an. Der gemessene Differenzdruck bei Säule 46 (siehe Abbildung \ref{pic:pd10} blieb über die gesamte Sanierungsdauer konstant. Hier liegt ein Messfehler vor, vermutlich verursacht durch Luftblasen in den Druckleitungen, sodass eine sinnvolle Auswertung nicht möglich ist. 
     177 
     178 
     179\begin{figure} 
     180\centering 
     181\includegraphics[scale=1]{k_neu_10}%{col10_pd} 
    185182\caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 43 bis 45} 
    186183\label{pic:pd10} 
     
    189186\begin{figure} 
    190187\centering 
    191 \includegraphics[scale=1]{col12_pd} 
     188\includegraphics[scale=1]{k_neu_12}%{col12_pd} 
    192189\caption{Verlauf von Differenzdruck und Permeabilität während der Sanierung der Säulen 51 bis 54} 
    193190\label{pic:pd12} 
     
    197194\section{Berechnung des Mobilisierungsrisikos - Anwendbarkeit auf das System} 
    198195 
    199 Für die Berechnung der Trapping Number stellte sich das Problem, dass die Grenzflächenspannung nicht mittels eines Tropfenvolumentensiometers messbar war. Die Abschätzung nach Antonow über die Oberflächenspannung der leichten Phase und des reinem Schwefelkohlenstoffs erwies sich als unzureichend, da die so bestimmten Werte deutlich zu hoch lagen. 
    200 Mit dieser Berechnungsart wurden Grenzflächenminima von 3 mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein, da Mobilisierung beobachtet wurde, welche in der Regel erst bei deutlich kleineren Werten auftritt
     196Für die Berechnung der Trapping Number stellte sich das Problem, dass die Grenzflächenspannung nicht mittels eines Tropfenvolumentensiometers messbar war. Die Abschätzung nach Antonow über die Oberflächenspannung der leichten Phase und des reinen Schwefelkohlenstoffs erwies sich als unzureichend, da die so bestimmten Werte deutlich zu hoch lagen. 
     197Mit dieser Berechnungsart wurden Grenzflächenminima von 3 mN/m gefunden. Tatsächlich dürfte die Grenzflächenspannung noch deutlich kleiner sein, da Mobilisierung beobachtet wurde, welche in der Regel erst bei deutlich kleineren Werten auftritt, vgl. \citep{Childs.2004}
    201198%Noch mal nachrecherchieren ab wann es standartmäßig zu Mobilisierung kommt. childs findet 3,92mN/m groß. 
    202199 
    203 Die Berechnung und Variation der Residualsättigung konnte nicht umgesetzt werden. Um die passenden Parameter zur Berechnung der Residualsättigung zu erhalten, sind entsprechende Versuche notwendig. \citep{Li.2007}. Die Berechnung wie in  \citet{Childs.2004}  verwendet, ist eine auf den dort verwendeten Sand und den DNAPL PCE angepasste nichtlineare Regression, wie in \citet{Pennell.1996} beschrieben. Obwohl zumindest der hier verwendete Sand dem von Childs verwendeten ähnelt, ist die  Übertragung solcher auf nichtlinerarer Regression basierender Modelle auf andere Systeme schwierig, da ihre Lösung nicht immer eindeutig ist und außerdem gute Ausgangswerte benötigt werden.  
     200Die Berechnung und Variation der Residualsättigung konnte nicht umgesetzt werden. Um die passenden Parameter zur Berechnung der Residualsättigung zu erhalten, sind entsprechende Versuche notwendig \citep{Li.2007}. Die Parameter zur Anpassung der Sättigungskurve markieren den Startpunkt, also die kritische Trapping Number, und die Steilheit der Kurve, vgl. \mbox{Gleichung \ref{eqn:Sn}}. 
     201 
     202Die Berechnung wie in  \citet{Childs.2004}  verwendet, ist eine auf den dort verwendeten Sand und den DNAPL PCE angepasste, nichtlineare Regression, wie in \citet{Pennell.1996} beschrieben.  
     203Der hier  verwendete Sand ähnelt zwar dem von \citet{Childs.2004} vervendeten, jedoch werden zwei völlig unterschiedliche DNAPls DNAPLs untersucht. %Obwohl zumindest der hier verwendete Sand dem von Childs verwendeten ähnelt, ist die   
     204Allgemein ist die Übertragung solcher auf nichtlinerarer Regression basierender Modelle auf andere Systeme schwierig, da ihre Lösung nicht immer eindeutig ist und außerdem gute Ausgangswerte benötigt werden.  
    204205 
    205206 
    206207\section{Zusammenfassung und Bewertung} 
    207208 
    208 Die Versuche zeigten, dass es möglich ist mit einer sehr niedrigen Tensidkonzentration von 1\%, einen Großteil des residual vorliegenden CS$_2$ aus der Säule zu entfernen. Im Feinsand wurden hier etwas bessere Erfolge erzielt als im Mittelsand. Die analytisch bestimmte Wiederfindung lag im Feinsand durchschnittlich bei 80\%, im Mittelsand bei durchschnittlich 70\%. Auch der Austrag erfolgte im Feinsand schneller. So wurde hier nach zwei Porenvolumina 80\% des Gesamtaustrags erreicht, bei Mittelsand waren dagegen drei bis vier Porenvolumina nötig. 
    209 Erstaunlich war die, im Vergleich zu den Batchtest, deutlich erhöhte Solubilisierungsrate. Bei einer Tensidkonzentration von 1\% wurden in den Batchtest nur CS$_2$-Konzentrationen von weniger als 50g/L erreicht, in den Säulenversuchen lagen die Konzentrationen bei 200g/L und mehr. Da mit der anfänglich eigesetzen Tensidkonzentration von 2\% vergleichbare Werte erreicht wurden, lässt sich sagen, dass die Tensidkonzentration hier keinen großen Einfluss ausübt. Relevant ist dagegen die Art des verwendeten Sandes und die Fließrate. Im Mittelsand war eine Verbesserung der Solubilisierung durch die niedrigere Fließrate möglich. Eine gleichzeitige Erhöhung des Mobilisierungsrisikos konnte dabei nicht festgestellt werden. Dieses wurde vorrangig verursacht, durch Inhomogenitäten im Sand. Die genauen Hintergründe die zur Entstehung von vertikaler Mobilisierung führen und die kritischen Fließrate bei der eine Wiederauflösung nicht mehr möglich ist, sind weiter zu untersuchen, vor allem auch für Feinsand, da hier auch bei einer Fließrate von 0,5ml/min noch keine Mobilisierung beobachtet werden konnte. Ebenso weitere Einflussgrößen, wie Grenzflächenspannung und Vikosität. Diese Parameter können in einer Trapping Number zusammengefasst werden, um die Berechnung des Mobilisierungsrisikos zu ermöglichen. 
    210  
    211  
    212  
    213  
     209Die Versuche zeigten, dass es möglich ist mit einer sehr niedrigen Tensidkonzentration von 1\%, einen Großteil des residual vorliegenden CS$_2$ aus der Säule zu entfernen. Im Feinsand wurden hier etwas bessere Erfolge erzielt als im Mittelsand, was am höheren Gradienten liegen dürfte. Die analytisch bestimmte Wiederfindung lag im Feinsand durchschnittlich bei 80\%, im Mittelsand bei durchschnittlich 70\%. Auch der Austrag erfolgte im Feinsand schneller. So wurde hier nach zwei Porenvolumina 80\% des Gesamtaustrags erreicht, bei Mittelsand waren dagegen drei bis vier Porenvolumina nötig. 
     210Erstaunlich war die im Vergleich zu den Batchtests deutlich erhöhte Solubilisierungsrate. Bei einer Tensidkonzentration von 1\% wurden in den Batchtest nur CS$_2$-Konzentrationen von weniger als 50g/L erreicht, in den Säulenversuchen lagen die Konzentrationen bei 200g/L und mehr. Da mit der anfänglich eigesetzen Tensidkonzentration von 2\% vergleichbare Werte erreicht wurden, lässt sich sagen, dass die Tensidkonzentration hier keinen großen Einfluss ausübt. Relevant ist dagegen die Art des verwendeten Sandes und die Fließrate. Im Mittelsand war eine Verbesserung der Solubilisierung durch die niedrigere Fließrate möglich. Eine gleichzeitige Erhöhung des Mobilisierungsrisikos konnte dabei nicht festgestellt werden. Dieses wurde vorrangig verursacht durch Inhomogenitäten im Sand. Die genauen Hintergründe, die zur Entstehung von vertikaler Mobilisierung führen sind weiter zu untersuchen und die kritische Fließrate bei der eine Wiederauflösung nicht mehr möglich ist, ist zu ermitteln. Dies ist besonders für Feinsand interessant, da hier auch bei einer Fließrate von 0,5 ml/min noch keine Mobilisierung beobachtet werden konnte. Ebenso weitere Einflussgrößen, wie Grenzflächenspannung und Vikosität. Diese Parameter können in einer Trapping Number zusammengefasst werden, um die Berechnung des Mobilisierungsrisikos zu ermöglichen. 
     211 
     212 
     213 
     214