Show
Ignore:
Timestamp:
09/29/12 17:44:29 (12 years ago)
Author:
phil
Message:

--

Files:

Legend:

Unmodified
Added
Removed
Modified
Copied
Moved
  • diplomarbeit/Diskussion.tex

    r223 r224  
    1919%Mobilisierung -> Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und NAPL so klein wird, dass sich die beiden Phasen unabhängig ineinander bewegen können. Je nach dem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase  mit der Strömung, oder aber er sinkt  nach unten ab. % Aufgrund der fehlenden Grenzflächenkräfte gleitet er ohne Wiederstand durch die Tensidlösung hindurch. %Mobilisierung trat im Mittelsand bei einigen Säulen auf. Im Feinsand wurde sie nur bei einer Säule (Nr. 52) beobachtet, als der Fluss vorübergehend unterbrochen war. Aufgrund der größeren Poren sind  die Kapillarkräfte im Mittelsand geringer als im Feinsand. Aufschluss darüber, wann es zur Mobilisierung kommt, kann die Trappingnumber (Gleichung \ref{eqn:trapping number}) geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder  Grenzflächenspannung, das Mobilisationsrisiko zu minimieren.  
    2020Bei der Bewertung der Ergebnisse aus den Säulenversuchen ist zu beachten, dass die Ausgangsbedingungen durch Unregelmäßigkeiten in der Sandpackung variieren können. Diese können beim Packen der Säulen durch feuchten Sand, schräges Einbauen der Säulen und  ungenügendem Vibrieren des Fallrohres entstehen. Sichtbar werden Störungen teilweise durch eine Schichtung (layering) in der mit angefärbten CS$_2$ aufgesättigten Säule.  Des Weiteren störend sind Lufteinschlüsse, da sie Poren blockieren und so eine ungleichmäßige Durchströmung der Säule zur Folge haben. Lufteinschlüsse entstehen durch unzureichendes Begasen mit CO$_2$ oder durch Eingasen von Luft in die Leitungen und Flaschen.  
    21 Die Packung der Säulen hat einen großen Einfluss auf das Entstehen von Mobilisierung.  
    22 Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrigen Phase bewegen kann. Je nach dem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase  mit der Strömung, oder aber er sinkt  nach unten ab. Mobilisierung trat bei einigen Säulen  im Mittelsand  auf.  Aufgrund der größeren Poren sind  die Kapillarkräfte im Mittelsand geringer als im Feinsand.   
    23 Die Beobachtung der Säulen zeigte zudem, dass das Tensid in die DNAPL-Phase eindringt, wie auch in den Batchversuchen beobachtet. Dies führt mitunter dazu, dass das Tensid sich scheinbar schneller bewegt, als durch die Strömung bedingt. Da dies leichter bei größeren Poren und der daher größeren Oberfläche der DNAPL-Blobs geht, werden die mit Mittelsand gepackten Säulen scheinbar schneller als die Feinsandsäulen mit Tensidlösung geflutet. Tatsächlich ist die Fließrate aber die selbe. Andererseits wurde der Feinsand   schneller saniert. Die weiße Emulsion schob sich blockartig durch die Säulen. Im Mittelsand dauerte dies länger. Die größeren DNAPL-Blobs konnten nicht auf einmal solubilisiert werden, so dass die Kontaktzeit zwischen Tensid und NAPL und damit der Austrag der Emulsion verlängert wurde. Aber auch die auftretende Mobilisierung im Mittelsand spielt eine Rolle für die Austragsdauer.  
    24 Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von einem auf zwei Prozent führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1 ml/min  und im Mittelsand bei 1\% und 0,5 ml/min gefunden. 
    25 Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als 50 g/L erreicht. Konzentrationen von 200 g CS$_2$ wurden erst mit 2,5\% Tensid gefunden. 
    26 Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei Bachversuchen beobachteter Effekt aufgetreten sein: Dort hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. 
    27 Eine weitere  Erklärung ist die Stabilisierung durch Feststoffpartikel (Pickering-Emulsion). 
    28 Aber auch die bessere Angreifbarkeit des feinverteilten DNAPLs auf Grund der größeren spezifischen Oberfläche der Blobs. Dispers verteilte kleine DNAPL-Tröpfchen lassen sich gut mittels Tensidspülung sanieren, nicht aber größere Blobs oder Pools. Dieser Fall wäre denkbar unter der Annahme, dass die Emulsion, die durch das Verschütteln der Batchansätze entsteht, nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Eine Entmischung der Batchansätze, die hierauf hinweisen würde, konnte jedoch nicht beobachtet werden. 
    29  
    30 Die Versuche zeigten, dass es möglich ist mit einer sehr niedrigen Tensidkonzentration von 1\%, einen Großteil des residual vorliegenden CS$_2$ aus der Säule zu entfernen. Im Feinsand wurden hier etwas bessere Erfolge erzielt als im Mittelsand. Die analytisch bestimmte Wiederfindung lag im Feinsand durchschnittlich bei 80\%, im Mittelsand bei durchschnittlich 70\%. Auch der Austrag erfolgte im Feinsand schneller. So wurde hier nach zwei Porenvolumina 80\% des Gesamtaustrags erreicht, bei Mittelsand waren dagegen drei bis vier Porenvolumina nötig. 
    31 Da mit der anfänglich eigesetzten Tensidkonzentration von 2\% vergleichbare Werte erreicht wurden, lässt sich sagen, dass die Tensidkonzentration hier keinen großen Einfluss ausübt. Relevant ist dagegen die Art des verwendeten Sandes und die Fließrate. Im Mittelsand war eine Verbesserung der Solubilisierung durch die niedrigere Fließrate möglich. Eine gleichzeitige Erhöhung des Mobilisierungsrisikos konnte dabei nicht festgestellt werden.  
    32  
    33 Diese Beobachtungen sollte in weiteren Versuchsreihen genauer analysiert werden. Sinnvoll erscheint hier zunächst die Optimierung des Sandpackungsvorgang um konstante Packungen zu erhalten. Ebenso könnte es interessant sein, den Sand durch ein homogeneres Material wie z.B. Glasperlen zu ersetzen, um einen oberflächenkatalytischen Effekt des Sandes auszuschließen. 
    34 In den weiteren Versuchen sollte dann die Fließrate weiter reduziert werden, bis zur kritischen Fließrate für die Mobilisierung im Feinsand, bzw. soweit das eine Resolubilisierung des mobilisierten DNAPLs nicht mehr möglich ist. 
    35  
    36  
    37 Aufschluss darüber, wann es zur Mobilisierung kommt, kann auch die Trapping Number geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder  Grenzflächenspannung, das Mobilisierungsrisiko zu minimieren.Über die Bestimmung der kritischen Trapping Number ließe sich das Mobilisierungsrisiko berechnen und das System könnte über entsprechende Anpassung von Viskosität und Grenzflächenspannung optimiert werden. Mit der vorhandenen Datengrundlage war es nicht möglich die kritische Trapping Number zu ermitteln. Zum Einen konnte die Grenzflächenspannung nicht gemessen werden und eine Abschätzung über die Oberflächenspannung erwies sich als unzureichend, zum Anderen war es nicht möglich die Residualsättigung über die Trapping Number zu berechnen. Das vorliegende Berechnungsschema für PCE war nicht übertragbar auf das System mit CS$_2$. 
    38 Für eine Anpassung an das System sind weitere Versuche nötig, in denen die Menge des mobilisierten DNAPLs bestimmt werden kann. 
    39  
    40  
    41  
    42 %th Ausblick: mögl. Optimierung der Injektionsbedingungen (Tensidlösung, Q, Slug) 
    43 %th Unters. auf anderen Skalen 
    44 %th Aussage für welche Systeme Tensidanwendung vielversprechend erscheint 
    45  
    46 %th mir fehlt eine saubere Darstellung nach einzelnen Einflussgrößen: Fließgeschwindigkeit, Permeabilität (Sand) 
    47  
    48  
    49  
    50  
    5121 
    5222 
     
    11585 
    11686 
     87Die Packung der Säulen hat einen großen Einfluss auf das Entstehen von Mobilisierung.  
     88Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrigen Phase bewegen kann. Je nach dem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase  mit der Strömung, oder aber er sinkt  nach unten ab. Mobilisierung trat bei einigen Säulen  im Mittelsand  auf.  Aufgrund der größeren Poren sind  die Kapillarkräfte im Mittelsand geringer als im Feinsand.   
     89Die Beobachtung der Säulen zeigte zudem, dass das Tensid in die DNAPL-Phase eindringt, wie auch in den Batchversuchen beobachtet. Dies führt mitunter dazu, dass das Tensid sich scheinbar schneller bewegt, als durch die Strömung bedingt. Da dies leichter bei größeren Poren und der daher größeren Oberfläche der DNAPL-Blobs geht, werden die mit Mittelsand gepackten Säulen scheinbar schneller als die Feinsandsäulen mit Tensidlösung geflutet. Tatsächlich ist die Fließrate aber die selbe. Andererseits wurde der Feinsand   schneller saniert. Die weiße Emulsion schob sich blockartig durch die Säulen. Im Mittelsand dauerte dies länger. Die größeren DNAPL-Blobs konnten nicht auf einmal solubilisiert werden, so dass die Kontaktzeit zwischen Tensid und NAPL und damit der Austrag der Emulsion verlängert wurde. Aber auch die auftretende Mobilisierung im Mittelsand spielt eine Rolle für die Austragsdauer.  
     90Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand. Die Erhöhung der Tensidkonzentration von einem auf zwei Prozent führte zu keiner weiteren Erhöhung der Konzentration. Zusammengefasst nach Tensidkonzentration und Fließrate wurden die größten Konzentrationen im Mittelsand bei 2\% Tensid und 1 ml/min  und im Mittelsand bei 1\% und 0,5 ml/min gefunden. Die Ergebnisse der einzelnen Versuche und Mittelwerte über Versuche gleicher Fließrate und Tensidkonzentration sind in Tabelle \ref{tab:Einfluss} zusammengefasst. 
     91Die gefundene maximale DNAPL-Konzentration lag über der der Batchversuche bei gleicher Tensidkonzentration. Dort wurden mit einprozentigen Tensidmischungen Konzentrationen von weniger als 50 g/L erreicht. Konzentrationen von 200 g CS$_2$ wurden erst mit 2,5\% Tensid gefunden. 
     92Das kann verschiedene Ursachen haben. Zum einen könnte hier ein bei Bachversuchen beobachteter Effekt aufgetreten sein: Dort hatte sich eine Mittelphase mit extrem hoher Solubilisierung gebildet. Diese war aber deutlich stärker gefärbt und instabiler als die entsprechenden Proben aus den Säulenversuchen. 
     93Eine weitere  Erklärung ist die Stabilisierung durch Feststoffpartikel (Pickering-Emulsion). 
     94Aber auch die bessere Angreifbarkeit des feinverteilten DNAPLs auf Grund der größeren spezifischen Oberfläche der Blobs. Dispers verteilte kleine DNAPL-Tröpfchen lassen sich gut mittels Tensidspülung sanieren, nicht aber größere Blobs oder Pools. Dieser Fall wäre denkbar unter der Annahme, dass die Emulsion, die durch das Verschütteln der Batchansätze entsteht, nicht fein genug ist oder die Tröpfchen durch Koaleszenz wieder größer werden. Eine Entmischung der Batchansätze, die hierauf hinweisen würde, konnte jedoch nicht beobachtet werden. 
    11795 
     96Die Versuche zeigten, dass es möglich ist mit einer sehr niedrigen Tensidkonzentration von 1\%, einen Großteil des residual vorliegenden CS$_2$ aus der Säule zu entfernen. Im Feinsand wurden hier etwas bessere Erfolge erzielt als im Mittelsand. Die analytisch bestimmte Wiederfindung lag im Feinsand durchschnittlich bei 80\%, im Mittelsand bei durchschnittlich 70\%. Auch der Austrag erfolgte im Feinsand schneller. So wurde hier nach zwei Porenvolumina 80\% des Gesamtaustrags erreicht, bei Mittelsand waren dagegen drei bis vier Porenvolumina nötig. 
     97Da mit der anfänglich eigesetzten Tensidkonzentration von 2\% vergleichbare Werte erreicht wurden, lässt sich sagen, dass die Tensidkonzentration hier keinen großen Einfluss ausübt. Relevant ist dagegen die Art des verwendeten Sandes und die Fließrate. Im Mittelsand war eine Verbesserung der Solubilisierung durch die niedrigere Fließrate möglich. Eine gleichzeitige Erhöhung des Mobilisierungsrisikos konnte dabei nicht festgestellt werden.  
     98 
     99Diese Beobachtungen sollte in weiteren Versuchsreihen genauer analysiert werden. Sinnvoll erscheint hier zunächst die Optimierung des Sandpackungsvorgang um konstante Packungen zu erhalten. Ebenso könnte es interessant sein, den Sand durch ein homogeneres Material wie z.B. Glasperlen zu ersetzen, um einen oberflächenkatalytischen Effekt des Sandes auszuschließen. 
     100In den weiteren Versuchen sollte dann die Fließrate weiter reduziert werden, bis zur kritischen Fließrate für die Mobilisierung im Feinsand, bzw. soweit das eine Resolubilisierung des mobilisierten DNAPLs nicht mehr möglich ist. 
     101 
     102 
     103Aufschluss darüber, wann es zur Mobilisierung kommt, kann auch die Trapping Number geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, zum Beispiel Fließgeschwindigkeit, Viskosität oder  Grenzflächenspannung, das Mobilisierungsrisiko zu minimieren.Über die Bestimmung der kritischen Trapping Number ließe sich das Mobilisierungsrisiko berechnen und das System könnte über entsprechende Anpassung von Viskosität und Grenzflächenspannung optimiert werden. Mit der vorhandenen Datengrundlage war es nicht möglich die kritische Trapping Number zu ermitteln. Zum Einen konnte die Grenzflächenspannung nicht gemessen werden und eine Abschätzung über die Oberflächenspannung erwies sich als unzureichend, zum Anderen war es nicht möglich die Residualsättigung über die Trapping Number zu berechnen. Das vorliegende Berechnungsschema für PCE war nicht übertragbar auf das System mit CS$_2$. 
     104Für eine Anpassung an das System sind weitere Versuche nötig, in denen die Menge des mobilisierten DNAPLs bestimmt werden kann. 
     105 
     106 
     107 
     108%th Ausblick: mögl. Optimierung der Injektionsbedingungen (Tensidlösung, Q, Slug) 
     109%th Unters. auf anderen Skalen 
     110%th Aussage für welche Systeme Tensidanwendung vielversprechend erscheint 
     111 
     112%th mir fehlt eine saubere Darstellung nach einzelnen Einflussgrößen: Fließgeschwindigkeit, Permeabilität (Sand) 
     113 
     114 
     115 
     116 
     117 
     118 
     119 
     120 
     121