13 | | Versuche die Emulsion durch die Zugaben von Cotensiden bzw. Linkern weiter zu optimieren, brachte keinen Erfolg. Das Ziel ein Mikroemulsionssystem zu erzeugen konnten mit keinem der verwendeten Additive erreicht werden. Dies kann zum einen an für das System generell ungeeigneten Additiven gelegen haben, aber auch an den experimentellen Bedingungen, z.B. Reihenfolge der Zugabe, Zugabegeschwindikeit, Equilibrationszeit, sowie an Randbedingungen wie Temperatur oder Salinität. |
---|
14 | | Emulsionen die, wie im vorliegenden Fall, durch ein nichtionisches Tensid stabilisiert werden, reagieren generell eher unempfindlich auf die Zugabe weiterer Chemikalien, sind aber empfindlich gegen Temperaturänderungen. Grundsätzlich ist es möglich mit nichtionischen Tensiden direkt ein Mikroemulsionssystem aus drei Komponenten, Tensid-Wasser-DNAPL, zu erzeugen. Hier empfiehlt sich die Herstellung nach der PIT-Methode. Bei der die Vermischung der Komponenten bei einer Temperatur knapp unterhalb der Phaseninversionstemperatur (PIT) erfolgt und die Emulsion schnell auf die gewünschte Temperatur abgekühlt wird. Die PIT wurde für das vorliegende System noch nicht bestimmt, da CS$_2$ wegen seines hohen Dampfdruckes und der Explosivität der Dämpfe schwierig zu händeln ist bei erhöhter Temperatur. |
---|
| 13 | Versuche, die Emulsion durch die Zugaben von Cotensiden bzw. Linkern weiter zu optimieren, brachten keinen Erfolg. Das Ziel, ein Mikroemulsionssystem zu erzeugen, konnte mit keinem der verwendeten Additive erreicht werden. Dies kann zum einen an für das System generell ungeeigneten Additiven gelegen haben, aber auch an den experimentellen Bedingungen, z.B. Reihenfolge der Zugabe, Zugabegeschwindikeit, Equilibrationszeit, sowie an Randbedingungen wie Temperatur oder Salinität. |
---|
| 14 | Emulsionen, die wie im vorliegenden Fall durch ein nichtionisches Tensid stabilisiert werden, reagieren generell eher unempfindlich auf die Zugabe weiterer Chemikalien, sind aber empfindlich gegen Temperaturänderungen. Grundsätzlich ist es möglich, mit nichtionischen Tensiden direkt ein Mikroemulsionssystem aus drei Komponenten, Tensid-Wasser-DNAPL, zu erzeugen. Hier empfiehlt sich die Herstellung nach der PIT-Methode. Bei der die Vermischung der Komponenten bei einer Temperatur knapp unterhalb der Phaseninversionstemperatur (PIT) erfolgt und die Emulsion schnell auf die gewünschte Temperatur abgekühlt wird. Die PIT wurde für das vorliegende System noch nicht bestimmt, da CS$_2$ wegen seines hohen Dampfdruckes und der Explosivität der Dämpfe schwierig zu handhaben ist bei erhöhter Temperatur. |
---|
88 | | Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrigen Phase bewegen kann. Je nach dem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase mit der Strömung, oder aber er sinkt nach unten ab. Mobilisierung trat bei einigen Säulen im Mittelsand auf. Aufgrund der größeren Poren sind die Kapillarkräfte im Mittelsand geringer als im Feinsand. |
---|
89 | | Die Beobachtung der Säulen zeigte zudem, dass das Tensid in die DNAPL-Phase eindringt, wie auch in den Batchversuchen beobachtet. Dies führt mitunter dazu, dass das Tensid sich scheinbar schneller bewegt, als durch die Strömung bedingt. Da dies leichter bei größeren Poren und der daher größeren Oberfläche der DNAPL-Blobs geht, werden die mit Mittelsand gepackten Säulen scheinbar schneller als die Feinsandsäulen mit Tensidlösung geflutet. Tatsächlich ist die Fließrate aber die selbe. Andererseits wurde der Feinsand schneller saniert. Die weiße Emulsion schob sich blockartig durch die Säulen. Im Mittelsand dauerte dies länger. Die größeren DNAPL-Blobs konnten nicht auf einmal solubilisiert werden, so dass die Kontaktzeit zwischen Tensid und NAPL und damit der Austrag der Emulsion verlängert wurde. Aber auch die auftretende Mobilisierung im Mittelsand spielt eine Rolle für die Austragsdauer. |
---|
90 | | Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tenisidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand, abhängig von der Tensidkonzentration und der Fließrate. Die größten Konzentrationen wurden dabei im Feinsand bei 2\% Tensid und 1 ml/min und im Mittelsand bei 1\% und 0,5 ml/min gefunden. Die Ergebnisse der einzelnen Versuche und Mittelwerte über Versuche gleicher Fließrate und Tensidkonzentration sind in Tabelle \ref{tab:Einfluss} dargestellt. |
---|
| 88 | Mobilisierung tritt immer dann auf, wenn die Grenzflächenspannung zwischen Tensidlösung und DNAPL so klein wird, dass sich der DNAPL ungehindert durch die wässrige Phase bewegen kann. Je nachdem, welche treibende Kraft dominiert, die Aufwärtsströmung oder die Erdbeschleunigung, bewegt sich der DNAPL als zusammenhängende Phase mit der Strömung, oder aber er sinkt nach unten ab. Mobilisierung trat bei einigen Säulen im Mittelsand auf. Aufgrund der größeren Poren sind die Kapillarkräfte im Mittelsand geringer als im Feinsand. |
---|
| 89 | Die Beobachtung der Säulen zeigte zudem, dass das Tensid in die DNAPL-Phase eindringt, wie auch in den Batchversuchen beobachtet. Dies führt mitunter dazu, dass das Tensid sich scheinbar schneller bewegt, als durch die Strömung bedingt. Da dies leichter bei größeren Poren und der daher größeren Oberfläche der DNAPL-Blobs geht, werden die mit Mittelsand gepackten Säulen scheinbar schneller als die Feinsandsäulen mit Tensidlösung geflutet. Tatsächlich ist die Abstandsgeschwindigkeit bei gleicher Porosität und Fließrate weitgehend identisch aber die selbe. Andererseits wurde der Feinsand schneller saniert. Die weiße Emulsion schob sich blockartig durch die Säulen. Im Mittelsand dauerte dies länger. Die größeren DNAPL-Blobs konnten nicht auf einmal solubilisiert werden, so dass die Kontaktzeit zwischen Tensid und NAPL und damit der Austrag der Emulsion verlängert wurde. Aber auch die auftretende Mobilisierung im Mittelsand spielt eine Rolle für die Austragsdauer. |
---|
| 90 | Der größte Teil an DNAPL wurde mit den ersten zwei Porenvolumen Tensidlösung entfernt. Die maximalen Konzentrationen lagen bei 240-270 g/L im Feinsand und bei 160-210 g/L im Mittelsand, abhängig von der Tensidkonzentration und der Fließrate. Die größten Konzentrationen wurden dabei im Feinsand bei 2\% Tensid und 1 ml/min und im Mittelsand bei 1\% und 0,5 ml/min gefunden. Die Ergebnisse der einzelnen Versuche und Mittelwerte über Versuche gleicher Fließrate und Tensidkonzentration sind in Tabelle \ref{tab:Einfluss} dargestellt. |
---|
100 | | Die Fließrate kann in den folgenden Versuchen weiter reduziert werden, bis zur kritischen Fließrate für die Mobilisierung im Feinsand, bzw. soweit das eine Resolubilisierung des mobilisierten DNAPLs nicht mehr möglich ist. |
---|
101 | | Ebenfalls bislang nicht untersucht ist der Einfluss der Strömungskontinuität. Die kurzzeitige Unterbrechung des Flusses durch einen technischen Deffekt bei einer feinsandgepackten Säule, zeigte jedoch einen erhebliche Anstieg des Mobilisierungsrisikos. Andererseits besteht die Möglichkeit durch eine gezielte Anpassung des Flusses während der Sanierung eine weitere Optimierung zu erzielen. |
---|
| 100 | Die Fließrate kann in den folgenden Versuchen weiter reduziert werden, bis zur kritischen Fließrate für die Mobilisierung im Feinsand, bzw. soweit, dass eine Resolubilisierung des mobilisierten DNAPLs nicht mehr möglich ist. |
---|
| 101 | Ebenfalls bislang nicht untersucht ist der Einfluss der Strömungskontinuität. Die kurzzeitige Unterbrechung des Flusses durch einen technischen Defekt bei einer feinsandgepackten Säule, zeigte jedoch einen erhebliche Anstieg des Mobilisierungsrisikos. Andererseits besteht die Möglichkeit durch eine gezielte Anpassung des Flusses während der Sanierung eine weitere Optimierung zu erzielen. |
---|
103 | | Aufschluss darüber, wann es zur Mobilisierung kommt, kann auch die Trapping Number geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, wie zum Beispiel Fließgeschwindigkeit, Viskosität oder Grenzflächenspannung, das Mobilisierungsrisiko zu minimieren.Über die Bestimmung der kritischen Trapping Number lässt sich das Mobilisierungsrisiko berechnen und das System kann über entsprechende Anpassung von Viskosität und Grenzflächenspannung optimiert werden. Mit der vorhandenen Datengrundlage war es jedoch nicht möglich die kritische Trapping Number zu ermitteln. Zum Einen konnte die Grenzflächenspannung nicht gemessen werden und eine Abschätzung über die Oberflächenspannung erwies sich als unzureichend, zum Anderen war es nicht möglich die Residualsättigung über die Trapping Number zu berechnen. Das vorliegende Berechnungsschema für PCE war nicht übertragbar auf das System mit CS$_2$. |
---|
| 103 | Aufschluss darüber, wann es zur Mobilisierung kommt, kann auch die Trapping Number geben. Nimmt sie einen für das System kritischen Wert an, kommt es zur Mobilisierung. Diesen kritischen Wert gilt es zunächst zu bestimmen, um dann durch Variation einzelner Systemgrößen, wie zum Beispiel Fließgeschwindigkeit, Viskosität oder Grenzflächenspannung, das Mobilisierungsrisiko zu minimieren.Über die Bestimmung der kritischen Trapping Number lässt sich das Mobilisierungsrisiko berechnen und das System kann über entsprechende Anpassung von Viskosität und Grenzflächenspannung optimiert werden. Mit der vorhandenen Datengrundlage war es jedoch im Rahmen dieser Arbeit nicht möglich, die kritische Trapping Number zu ermitteln. Zum Einen konnte die Grenzflächenspannung nicht gemessen werden und eine Abschätzung über die Oberflächenspannung erwies sich als unzureichend, zum Anderen war es nicht möglich die Residualsättigung über die Trapping Number zu berechnen. Das vorliegende Berechnungsschema für PCE war nicht übertragbar auf das System mit CS$_2$. |
---|
108 | | Tensidspülungen sind noch immer ein wenig verbreitetes Verfahren in der Sanierung von DNAPL-Schäden im Grundwasser, was nicht zuletzt an der Komplexität der Systeme liegen mag. Die Eignung ist auch eingeschränkt. So ist es nur schwer möglich größere DNAPL-Pools mittels Solubilisierung in vertretbaren Zeitskalen zu sanieren. Hier spielt das Oberflächen-Volumen-Verhältnis eine bedeutende Rolle. Die Solubilisierung eignet sich vor allem für sehr kleine, verteilt vorliegende Blobs. Dies ist bereits an erkennbar an den unterschiedlichen Ergebnissen der beiden verwendeten Sande. Je größer die Blobs sind, desto größer wird auch das Risiko unerwünschter Mobilisierung. Bei geeigneten Standorten mit kleinen, feinverteilten, von der Strömung gut erreichbaren Blobs und homogenem Boden kann die Solubilisierung ein geeignetes Verfahren darstellen. Es ist dann nur eine geringe Tensidkonzentration und wenige Spülgänge nötig um eine nachhaltige Reduktion des DNAPLs im Boden zu erzielen. |
---|
| 108 | Tensidspülungen sind noch immer ein wenig verbreitetes Verfahren in der Sanierung von DNAPL-Schäden im Grundwasser, was nicht zuletzt an der Komplexität der Systeme liegen mag. Die Eignung ist auch eingeschränkt. So ist es nur schwer möglich, größere DNAPL-Pools mittels Solubilisierung in vertretbaren Zeitskalen zu sanieren. Hier spielt das Oberflächen-Volumen-Verhältnis eine bedeutende Rolle. Die Solubilisierung eignet sich vor allem für sehr kleine, verteilt vorliegende Blobs. Dies ist bereits an erkennbar an den unterschiedlichen Ergebnissen der beiden verwendeten Sande. Je größer die Poren (und damit auch die Blobs) sind, desto größer wird auch das Risiko unerwünschter Mobilisierung. Bei geeigneten Standorten mit kleinen, feinverteilten, von der Strömung gut erreichbaren Blobs und homogenem Boden kann die Solubilisierung ein geeignetes Verfahren darstellen. Es ist dann nur eine geringe Tensidkonzentration und wenige Spülgänge nötig, um eine nachhaltige Reduktion des DNAPLs im Boden zu erzielen. |
---|